

Public Perceptions of Hydrogen 2021 National Survey Results

June 2021

Project number: RP2.1-02

Investigating the Australian public attitudes to hydrogen and future fuels

Authors:

Dr. Victoria Martin, Prof. Peta Ashworth, Dr. Svetla Petrova, Dr. Belinda Wade, Dr. Kathy Witt

Project team:

Prof. Peta Ashworth, Dr. Victoria Martin, Dr. Svetla Petrova, Dr. Belinda Wade, Dr. Kathy Witt, Mr. Elliot Clarke

Australian Government Department of Industry, Science, Energy and Resources Business Cooperative Research Centres Program

This work is funded by the Future Fuels CRC, supported through the Australian Government's Cooperative Research Centres Program. We gratefully acknowledge the cash and in-kind support from all our research, government and industry participants.

Important Disclaimer

Future Fuels CRC advises that the information contained in this report comprises statements based on research. Future Fuels CRC makes no warranty, express or implied, for the accuracy, completeness or usefulness of such information or represents that its use would not infringe privately owned rights, including any parties intellectual property rights. To the extent permitted by law, Future Fuels CRC (including its employees and Participants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this report (in part or in whole) and any information or material contained in it.

© Copyright 2021 Future Fuels CRC. All Rights Reserved

Acknowledgement

This work is funded by the Future Fuels CRC, supported through the Australian Governments' Cooperative Research Centres Program. The cash and in-kind support from the industry participants is gratefully acknowledged.

Project Information

Project number	RP2.1-02
Project title	A social license and acceptance of Future Fuels
Research Program	RP2.1-02 Investigating the Australian public attitudes to hydrogen and future fuels
Milestone Report Number	6. (4.3.3) Report on national survey findings
Description	This report details the findings of a national survey to understand public perceptions towards hydrogen. It examines responses to hydrogen "export and future energy considerations" and "domestic use" of hydrogen.
Research Provider	University of Queensland
Project Leader and Team	Prof. Peta Ashworth Dr. Belinda Wade Dr. Kathy Witt Dr. Victoria Martin Dr. Svetla Petrova Mr. Elliot Clarke
Industry Proponent and Advisor Team	James Turnley (Jemena) Kristin Raman (AGIG) Ashley Kerrison Briony O'Shea (GPA Engineering) Ross Jamieson (SIT Gas Controls) Mike Malavos (SA Govt) Lynette Day (SA Govt)
Related Commonwealth Schedule	2.1.1 Reports on methods/techniques for tracking opinion trends leading to community engagement challenges.2.1.3 Report on attitudes of the Australian society toward the risks and benefits of hydrogen as an energy carrier.
Project start/completion date	Sep 2019/ May 2023
IP Status	Public Domain
Approved by	James Turnley
Date of approval	1 st July, 2021

Table of Contents

Projec	ct Info	prmation	4
Summ	nary o	f Report	8
Мај	or Co	nclusions	9
Imp	licati	ons and Recommendations for industry	
Kev	v stati	stics and findings	10
1.09	- Otati		
1. In	troau	ction	12
2. Li	teratı	ıre review	13
3. M	letho	ds	15
3.1.	Su	rvev development	
3.2	1.1.	Survey flow	
3.2	1.2.	Specific questions	17
3.2.	Sa	mpling	17
3.3.	An	alysis	
3.4.	Re	spondent characteristics	
1 D	oculto		10
4. N	esuits		
4.1.	Init	ial knowledge and awareness of hydrogen	19
4.2.	Su	pport for hydrogen	21
4.2	2.1.	Support for hydrogen by State	22
4.2	2.2.	Differences in support for hydrogen by gender and political party preferences	23
4.2	2.3.	Relationships between support for hydrogen and knowledge of hydrogen	24
4.2	2.4.	Reasons for selecting the midpoint	24
4.2	2.5.	Other reasons for midpoint selection	25
4.2	2.6.	Current gas users' and non-users' support for hydrogen	25
4.2	2.7.	Comparison with 2018 ARENA data	25
4.2	2.8.	Message effects on support for hydrogen	26
4.3.	Pe	ceptions of hydrogen production and use	27
4.4.	Ex	oort & future energy considerations	
4.4	4.1.	Agreement with potential future energy sources and technologies	28
4.4	4.1.1.	Differences between States	29
4.4	4.1.2.	Differences between political party preferences	29
4.4	4.2.	Importance of export considerations	
4.4	4.3.	Support for hydrogen export and facilities	31
4.5.	Do	mestic use	
4.5	5.1.	Willingness to use hydrogen for domestic applications	

4.5.2 4.5.3	4.5.2. Importance of factors related to domestic use of hydrogen4.5.3. Support for domestic hydrogen facility				
4.6.	Attitudes towards hvdrogen				
4.7.	Climate change beliefs				
4.8	Environmental identity	36			
<u> </u>	Innovator category	37			
4.0	Ability to pay operay bills	20			
4.10 4.10 4.10	Ability to pay electricity bills 0.1. Ability to pay electricity bills 0.2. Ability to pay gas bills				
4.11.	Trust in organisations	40			
5. Cor	nclusions	41			
6. Im	plications and Recommendations for industry	42			
7. Ne	xt steps and future works	42			
8. Ref	ferences	43			
Append	dix 1. Additional information and analyses	45			
Α.	Respondent characteristics (Sample description)	45			
В.	Household energy characteristics				
C.	Conversion of 2018 ARENA data				
D.	Additional analyses	53			
E. futur	Agreement with potential energy sources and technologies t e energy needs	o generate 93			
F. E	Export & future energy considerations	119			
Sup	port for hydrogen export and facilities				
G.	Trust in organisations				
Annend	dix 2 National Survey	126			
Parti	cinant information sheet	127			
Perc	entions knowledge and awareness	129			
Perc	ceptions, knowledge & awareness of hydrogen port for hydrogen				
Back	ground information about hydrogen				
Hydr	ogen production preferences	132			
Strea	am A questions (Future energy & export)				
Futu	are energy source preferences	133			

Export considerations	
Stream B questions (Domestic use) Willingness to use hydrogen for domestic purposes Support for hydrogen	136
Communication messages	139
Attitude towards hydrogen	140
Trust in groups	140
Climate change beliefs	141
Environmental identity	141
Innovator category	141
Household characteristics	142
Current use and energy preferences	144
Capacity to pay energy bills	145
Demographics	145

Summary of Report

This report presents the findings of a recent national survey of the Australian public to understand their response to hydrogen as a future energy source. The survey builds on earlier research conducted on behalf of the Australian Renewable Energy Agency (ARENA) in 2018 (Lambert & Ashworth, 2018) as part of developing Australia's National Hydrogen Strategy. The ARENA report was the first national investigation of the Australian public's perceptions towards hydrogen. The ARENA report found that overall, the Australian public were cautiously optimistic about the potential for hydrogen, as long as there were appropriate safety regulations in place.

A market research company was used to recruit the 3020 sample of respondents which approximated the age, gender, and state/territory of residence across Australia. Like the 2018 survey, after answering a range of general questions about their knowledge (objective and subjective), awareness and initial support for hydrogen, participants were then provided with background information about hydrogen including an animated video, additional images and text. The sample was subsequently split into two streams to reduce overall length of the survey. Stream A focused on "export and future energy considerations" (n = 1,513) and Stream B focused on "domestic use" (n = 1,507). Following these questions respondents were randomly allocated into 5 groups (including a control group) to test their response to four messages which included:

- <u>Message 1: Environmental message (transition)</u> Reducing carbon emissions from the gas network by blending in 5-10% renewable gases (like hydrogen) is an important first step towards Australia's future energy mix.
- <u>Message 2: Economic message (national)</u> Hydrogen will provide important economic benefits to Australia through export revenue, new industries, and jobs.
- <u>Message 3: Environmental message (100% renewable energy)</u> Australia can use its abundant renewable energy resources to produce hydrogen, which will give us 100% emissions-free "green" energy.
- <u>Message 4: Economic message (household)</u> The government is partnering with industry to develop tangible solutions to make hydrogen energy affordable for Australian households.

Support for hydrogen was examined within the survey at three time points. The illustration below (See Figure 1 Support for hydrogen at Time 1, 2 and 3. shows the change in expressed support for hydrogen across Time 1 (at the start of the survey), Time 2 (after the additional information was provided) and Time 3 (after the seeing communication messages). An overall general increase in support was observed suggesting the information provided to respondents within the survey positively influenced their support for hydrogen.

Figure 1 Support for hydrogen at Time 1, 2 and 3.

However, when examining the impact of the messages, only one group recorded a small but statistically significant increase in their level of support. Analyses revealed a small positive effect of Message 3 on the level of support at T3 compared to the control group at T2. The mean scores for the other message groups were not significantly different from the control group at T2. Data shows that Australians are more comfortable with hydrogen produced from renewable energy.

When examining the impacts of political party preferences on support for hydrogen, we found there were no significant differences in the levels of support for hydrogen between those who associate with different major political parties - Liberal/National, Labor and Greens - at any of the 3 time points. However, the respondents who

did not associate themselves with any of the three major parties expressed significantly lower support for hydrogen compared to the major political parties. This finding suggests that the development of a hydrogen industry should continue to invoke bi-partisan support across Australia. This augurs well for ensuring a coordinated approach to developing a hydrogen industry as outlined in the National Hydrogen Strategy when it was launched.

When comparing support for hydrogen with data from the 2018 ARENA survey to evaluate any change in public sentiment, the Time 1 measure from the 2021 National Survey was used for the comparison, as this was in the same position as the same question in the 2018 ARENA survey. There was a small but significant increase in the level of support for hydrogen between the 2018 ARENA survey (M = 4.99, SD = 1.20) and the 2021 National Survey (M = 5.31, SD = 1.25), t(5803)=10.20, p < .01, Cohen's d = 0.26) as illustrated in Figure 2 Comparison of support for hydrogen between 2021 and 2018.below.

Figure 2 Comparison of support for hydrogen between 2021 and 2018.

Increased support for hydrogen was observed in the responses following the video and provision of additional information about how hydrogen could be produced. Respondents were asked to indicate the extent to which they agree or disagree with a set of statements about hydrogen production processes and hydrogen use in Australia. Their responses mirrored the 2018 ARENA survey albeit with stronger agreement. They were most in agreement that "hydrogen should be used increasingly for Australia's energy supply"; that "using hydrogen will reduce greenhouse gas emissions"; "the use of hydrogen contributes to climate protection"; and "that hydrogen should be produced using renewable energy and electrolysis only". While still positive, respondents showed least agreement with producing hydrogen from fossil fuels and CCS, and slightly more agreement with it as an interim step. The overall response to producing hydrogen "with fossil fuels and carbon capture and storage indefinitely" was almost neutral.

When it came to export considerations, safety in transport and production processes were considered most important. Creating jobs and increasing economic benefits to Australia were also important along with minimising environmental impacts and ensuring a domestic hydrogen supply. These elements are reflected in the frameworks of technology acceptance and ensuring a social licence to operate. As with all new technologies, safety and local benefits will be critical in enhancing the positive development of a large scale hydrogen industry.

MAJOR CONCLUSIONS

While there was a small but significant increase in general support for hydrogen since 2018, only a small percentage of the population reported being confident about their subjective knowledge of hydrogen. However, there is clearly a growing awareness of hydrogen. It is also apparent that general knowledge of hydrogen as an alternative energy source for the home is increasing. Although awareness of specific projects and policies is still relatively low.

The bi-partisan support for hydrogen from the participants' responses also suggests that this should have a positive influence on realising the benefits of a hydrogen industry. Overall, it appears hydrogen is perceived to be a useful, beneficial, and worthwhile technology. Although, there is some variation in the way people feel about hydrogen - reflected in the greater standard deviation scores in response to the attitudinal questions asked.

The fact that the largest change in opinion was between the T1 and T2 support questions suggests that people will form their opinions based on their understanding and knowledge of the technology more than on a simple message frame. The factual information provided through the animated video and images and texts had some effect on general support for hydrogen. This suggest that providing some factual information as the industry develops will be helpful in garnering support. However, whether this is enough to have a long lasting effect remains to be seen. At the same time, in all of the responses to date, projects and the use of hydrogen remain relatively hypothetical. As this changes, it will be important to ensure there is adequate engagement with the range of publics to provide them with relevant information and answer any questions they have.

There was an increase in acceptance of all forms of hydrogen production from 2018, including with CCS, although this was least preferred. Respondents clearly indicated a preference for hydrogen produced from renewable energy and electrolysis. However, these responses do not take into account any reflection on the scale required for ensuring a successful export industry. This includes considerations of competing land and water use, and changes in lifestyles that may be bought about from hosting large scale renewable energy projects. Similarly, while people were accepting of hydrogen for export use, they were more likely to agree to a production facility near them for domestic use rather than for export.

The results demonstrate that respondents are rather in agreement with hydrogen as a potential future energy source for generating Australia's future energy needs. When compared with other energy technologies, "the new renewable" fall third behind solar PV and wind in the technologies provided. When considering developing an export market there are multiple factors that need to be considered in equal amounts. Safety is key, but there is also a need to ensure economic benefits for Australia including jobs while ensuring environmental impacts are minimised.

When it comes to local householder preferences, gas appears to be the preferred cooking fuel and it can be speculated that as a result, hydrogen blends would also seem acceptable. However, when comparing support for hydrogen between gas users and non-gas users, the effects were quite small which suggests that Australians are not completely committed to a gas future. It is likely that safety, costs and overall affordability of choices will influence this final outcome.

IMPLICATIONS AND RECOMMENDATIONS FOR INDUSTRY

- Safety is the number one priority for Australians to ensure the development of a successful hydrogen industry and will require adequate regulations are in place provide confidence.
- Australians are positive toward the economic opportunities it might bring such as jobs and benefits for regional communities.
- Provision of factual information during the survey, did help to strengthen support for those who had previously expressed no opinion, however it did not influence those who were strongly opposed.
- Green hydrogen continues to be the preferred generation source compared with any using CCS.
- Overall there is multi-partisan support for hydrogen which is helpful when considering the industry's development.
- While gas users expressed a stronger support for continued use of gas and transition to hydrogen, the difference was minimal. This will be an important issue to monitor as the continued discussion between all electric and gas transpires.

KEY STATISTICS AND FINDINGS

- When asked "When you hear the word hydrogen what are the first things that come to mind?", 46% recalled chemistry or chemicals, 20% power and energy and another 20% water.
- Less than 6% of respondents correctly answered all 5 objective knowledge questions correctly. Questions that received the most correct answers was "*can hydrogen be stored as a liquid*" (60%) and "*is hydrogen flammable in air*" (50%).
- Despite objective knowledge being lower in the 2021 survey than the 2018 results, self-reported subjective knowledge about hydrogen was higher in 2021 for all statements except "*How hydrogen is produced*".
- Almost 40% of respondents reported having heard about hydrogen in the media and 27% reported they had heard about a hydrogen production project in Australia and 21% about a project blending natural gas and hydrogen for domestic use.

- More people in Tasmania (51.0% more than expected), Northern Territory (26.4%), New South Wales (9.7%), South Australia (9.2%), and the Australian Capital Territory (3.9%) had heard about a hydrogen project in Australia.
- Participants became more supportive of hydrogen as they progress through the survey with mean score increasing from 5.31 at Time 1 to 5.94 at Time 3 on a 7 point Likert scale (1=very unsupportive to 7= very supportive).
- As in the 2018 ARENA survey, males tended to be slightly more supportive of hydrogen compared with females, however support grew for both genders as they completed the survey.
- Support for hydrogen was similar across all States and there were no statistically significant differences in the mean State scores at each time point.
- There were no significant differences in the level of support for hydrogen between those who associate with different major major political parties Liberal/National, Labor and Greens at any of the 3 time points, however the "other" group expressed significantly lower support for hydrogen than all other groups.
- On average, respondents currently connected to the gas supply (*N* = 1774) were more supportive of hydrogen than respondents who are not connected. While there were statistically significant differences between the two groups at the two time points, the effect sizes were small which suggests that support for hydrogen is not related to whether households are connected to the current gas supply.
- Compared with data from the 2018 ARENA survey there was a small but significant increase in the level of support for hydrogen between the 2018 ARENA survey (*M* = 4.99, *SD* = 1.20) and the 2021 National Survey (*M* = 5.31, *SD* = 1.25) (Time 1).
- Most respondents (75.6%) indicated they believe climate change is already happening, which is an increase from the 2018 ARENA survey (70.8%).

1. Introduction

The challenge of mitigating climate change continues with limited progress towards achieving the Paris Agreement targets (UN Emissions Gap Report, 2020, Union of Concerned Scientists, 2020). As a result, governments around the world are seeking technological solutions to limit the associated negative impacts of rising greenhouse gas emissions. Low carbon hydrogen has emerged as one technological solution and is becoming increasingly important for the world's energy transition (Advisian, 2021).

While the use of hydrogen is not new (it has been produced and utilised around the world for many years), hydrogen produced from electrolysis of water using either renewable energy or gas combined with carbon capture and storage, provides low carbon options not previously contemplated (Commonwealth of Australia, 2019). With the cost of renewable energy significantly reducing, combined with an increased likelihood of financial carbon abatement measures being introduced, many countries are turning their efforts towards the development of a global hydrogen market. For some countries (e.g., Japan and Korea), the interest is mainly to import hydrogen as an alternative source of energy, because their own low carbon resources or land availability are limited (Koyama, 2021). However, other countries, such as Saudi Arabia, Germany, and Australia, are eager to develop a hydrogen production and export market.

Clean (carbon emissions-free) hydrogen production currently remains uncompetitive with other sources of energy (Advisian, 2021). However, the potential to decarbonise hydrogen, combined with opportunities to reduce the cost of production through increased scale and demand, means that governments around the world are investing heavily in the development of a hydrogen industry. While this brings new opportunities, the potential introduction of hydrogen either into domestic markets or for export is not without perceived risks or negative reactions (Ashworth & Lambert, 2019). Emergent industries are faced with substantial challenges in managing public perceptions of risk and distrust (Slovic, 1993). Therefore, gaining an early understanding of how the public responds to the potential of hydrogen and its uses, is beneficial to inform both government and industry actions to help ensure a social licence to operate for hydrogen is achieved (Moffat and Zhang, 2014).

This report details the findings of a recent national survey of the Australian public to understand their response to hydrogen as a future energy source, its use in domestic applications as well as considerations for its production and export. The survey builds on earlier research conducted on behalf of the Australian Renewable Energy Agency (ARENA) in 2018 (Lambert & Ashworth, 2018) as part of developing Australia's National Hydrogen Strategy. The ARENA report was the first national investigation of the Australian public's attitudes towards hydrogen. It found that, overall, the Australian public remained cautiously optimistic about the potential of hydrogen if there were appropriate safety regulations in place.

The review of the literature and previous research by the team led to the following research questions

- 1. What are the factors that influence support for hydrogen?
- 2. Do individuals respond differently to export versus a domestic industry?
- 3. Does providing factual information to survey respondents lead to greater support?
- 4. Do different message frames influence support for hydrogen?
- 5. Will existing gas users show a stronger preference towards gas and hydrogen?

This report begins with a review of previous research on public perceptions of energy technologies, including hydrogen. The methodology used in the national survey is then detailed, followed by the results, which include explorations of the relationships between respondent characteristics and their support for hydrogen. The report finishes with a discussion of the findings and conclusions.

2. Literature review

There is an extant body of literature that investigates the societal acceptance of, and attitudes towards, energy technologies. This is helpful when considering the factors that may impact support for hydrogen. Most of this work, dates back to the early introduction of nuclear (Pidgeon et al. 2008, de Groot, Steg, Poortinga, 2013) and wind power projects that invoked mixed responses and opposition from potential host communities (Wolsink, 2007; Wustenhagen, Wolskink, Burger, 2007). More recently, there has been increased focus on the public support for low carbon technologies that facilitate climate change mitigation. This includes increased renewable energy generation such as solar photovoltaics (solar PV) and concentrated solar thermal (Pisarski and Ashworth, 2013); wind (Hall, Ashworth, Devine-Wright, 2013); geothermal (Dowd et al. 2011); or carbon capture and storage (CCS) for reducing emissions from coal and gas fired power stations (Fleishman, Bruine de Bruin, Morgan, 2010; Ashworth, Sun, Ferguson et al. 2019).

The Technology Acceptance Framework (TAF) proposed by Huijts and colleagues (2012) helps to identify the range of psychological factors that influence motivations to support or oppose new energy technologies. Many of these factors have been investigated through separate studies such as trust (Terwell et al. 2009, Visschers, Keller, Siegrist et al., 2011), procedural and distributive fairness (Moffat and Zhang, 2014), and perceived risks and benefits (Connor & Siegrist, 2016). Research on socio-psychological factors influencing social acceptance carried out by Gupta et al. (2012) yields similar findings and highlights perceived risk, trust, knowledge, and individual differences to be among the most commonly reported determinants in studies investigating social acceptance of energy technologies (Gupta, Fisher and Frewer, 2012).

Psychological attitudes towards a behaviour are often measured in terms of their "instrumental" attitudes, i.e. overall perceived usefulness or benefits of the behaviour, and their "experiential" attitudes, i.e. what people perceive the experience of the behaviour will be like (Fishbein & Ajzen, 2010). The more positive a person's attitude, the more likely they will uptake the behaviour in question. Attitudes influence people's intentions and behaviours, and are an integral component of the TAF (Huijts, Molin, & Steg, 2012).

The TAF (Huijts et al. 2012) also acknowledges the additional factors of knowledge and experience, have an influence on energy technology acceptance. Research has confirmed that contextual considerations, such as what has previously occurred in a host region (Bradbury et al., 2009) and the existence of adequate regulations to manage safety and environmental considerations (Zhang & Moffat, 2015) have been important in building support for projects.

Recognising the interplay between psychological factors and knowledge, prior work by Hobman and Ashworth (2013) also found that pro-environmental beliefs and the provision of factual information also influenced support for various energy sources. They found that those with stronger pro-environmental beliefs were associated with more support for low carbon energy sources (Dunlap, Van Liere, Mertig, & Jones, 2000; Fielding, Russell, Spinks, & Mankad, 2012). Similarly, the provision of factual information changed support ratings for various energy technologies.

There is also a large body of work investigating the effect of message framing and how the resultant frames shape public perceptions. The work of Terwel at al. (2009) on trust in organisations working in CCS is one example. A component of their work investigated the perceived organisational integrity of either an oil and gas company or an environmental non-government organisation by attributing different message frames to each organisation. Depending on what message was attributed to the organisation, that is either an economic or environmental message as the primary motivation for undertaking CCS, influenced respondents' perceptions of each organisation's integrity. This, combined with measures of the organisation's competence, influenced respondents' overall perceptions of the relative risks and benefits of CCS and ultimately their trust in the technology. Because Australia is in the early stages of a burgeoning hydrogen industry and government and industry are interested in how best to communicate about hydrogen, we experimented with different message frames (as detailed in the methodology section).

Because hydrogen's introduction has been motivated by its decarbonisation potential, it was also important to understand the public's perceptions towards climate change. While the majority of scientists warn the world is far beyond avoiding multiple climate related impacts and disasters, conservative Australian governments and their voters, remain steadfast in their support for fossil fuels and related industries – a major contributor of the world's greenhouse gas emissions (Fielding, Head, Laffan et al. 2012; Ashworth, Sun, Ferguson et al. 2019). This seems

counter to any logical response, particularly given that Australia recently experienced some of the worst droughts, floods and bushfires in its history on the back of Australia's hottest and driest year on record (Commonwealth of Australia, 2020). Understanding the links between political party preference and belief in climate change therefore became integral to this study.

While there is a large body of academic literature on public perceptions and acceptance of hydrogen for transportation, especially in connection with refuelling infrastructure, hydrogen cars, and public transport, there has been very little research investigating public perceptions of hydrogen for use in the home (Lambert and Ashworth 2018; Scott and Powells, 2019), particularly in Australia. How Australians understand, accept, support and use hydrogen in their homes and their tolerance for hydrogen production and export will have a definitive impact on the realisation of hydrogen as a successful industry and future fuel.

In addition, as the various states and territories set targets for renewable energy and lowering their emissions to zero, we have seen a strong debate emerge about the role of gas in a low carbon future. The outcomes of this debate and resultant policy measures may severely impact the ability for hydrogen to be part of Australia's decarbonisation solution, not to mention the potential for costly stranded assets. Given that domestic demand will be integral to achieving the scale required to meet the expected export market we investigated whether existing gas users have a preference for maintaining their gas use. Similarly, whether these users are likely to be more supportive of a hydrogen industry.

3. Methods

3.1. SURVEY DEVELOPMENT

The majority of the questions used in this survey (see <u>Appendix 2</u>) were the same, or very similar to, those used in the 2018 survey conducted by the Project Leader on behalf of the Australian Renewable Energy Agency (ARENA), titled *The Australian public's perception of hydrogen for energy* (Lambert & Ashworth, 2018). Modifications to the ARENA survey questions are documented in <u>Appendix 1.C</u>, and most changes involved either increase in the number of points on the response scales to enable more variability in the responses (Chyung, Roberts, Swanson, & Hankinson, 2017), or minor revisions to the wording for clarity.

Several other topics were introduced to the questionnaire for this research. These included:

- Instrumental and experiential attitudes towards hydrogen energy (Fishbein & Ajzen, 2010)
- Awareness of hydrogen policy and industry developments in Australia (new, from research team) given the rapid pace of change and announcements from across Australian states and territories
 - Environmental identity (Fielding et al., 2008) to replace other environmental scales used previously
- Climate change concern (Gardner, Parsons, & Paxton, 2010) to complement the climate change belief question
- Energy source preferences (Jeanneret et al., 2014) for comparison with previous research
- Four message frames about hydrogen based on statements that had appeared in the Australia media
- Reasons for midpoint selection for "Support for hydrogen" questions (adapted from Nadler et al., 2015)

The survey instrument was reviewed by the research team and in consultation with the FFCRC industry partners, after which minor revisions were made to the wording. The online questionnaire was programmed by Q & A Market Research, then tested by the research team for functionality issues after which further programming revisions were made. Where appropriate, the responses to questions were randomised to avoid question order effects. The survey took respondents approximately 25 minutes to complete.

3.1.1. Survey flow

Figure 3 provides an overview of the flow of survey questions and the points at which information was provided to respondents. The first set of questions were presented to all respondents. After that, the sample was split into two groups to answer separate questions on either (1) Export and future energy considerations, or (2) Domestic use. After this point, all respondents continued with the same questions.

Figure 3. Flow of survey sections

3.1.2. Specific questions

The first section presented screening questions, after which all eligible respondents completed the participant information sheet. They were then asked about their initial perceptions, knowledge and awareness of hydrogen and hydrogen discussions in Australia. After this they were asked about their level of support for hydrogen as a possible solution for energy and environmental challenges. This measurement is a key indicator for this study, so it was measured three times during the survey: (1) at the start, (2) about mid-way after the sections on export and domestic use, and (3) after a section that tested different messages about developing the hydrogen industry in Australia (described below).

Following these general questions, background information about hydrogen and the hydrogen industry was provided. Respondents watched a short (1 minute, 42 seconds) animated video produced by ARENA (<u>https://youtu.be/fFGT2z82tOM</u> "What is renewable 'green' hydrogen gas?"), which explains what hydrogen energy can be used for, how "green" hydrogen can be produced, and the potential for Australia to export hydrogen. This was followed by an image and text that further explained how hydrogen can be produced, including with renewable energy, fossil fuels, and carbon capture and storage. The respondents then went on to answer questions about their agreement with different ways of producing hydrogen.

At this point in the survey, the respondents were split into the two streams to reduce the survey duration. Stream A contained questions about "export and future energy considerations" (n = 1,513) and Stream B focused on "domestic use" (n = 1,507). After these sets of questions, all respondents were presented with the remaining questions. The next section repeated the support for hydrogen question (Time 2), followed by a section that tested four different messages about hydrogen energy. The respondents were randomly allocated into 5 groups (spread across the two earlier streams) to test these four messages and allow for a control group that did not read any message. The four messages were:

- <u>Message 1: Environmental message (transition)</u> Reducing carbon emissions from the gas network by blending in 5-10% renewable gases (like hydrogen) is an important first step towards Australia's future energy mix.
- <u>Message 2: Economic message (national)</u> Hydrogen will provide important economic benefits to Australia through export revenue, new industries, and jobs.
- <u>Message 3: Environmental message (100% renewable energy)</u> Australia can use its abundant renewable energy resources to produce hydrogen, which will give us 100% emissions-free "green" energy.
- <u>Message 4: Economic message (household)</u> The government is partnering with industry to develop tangible solutions to make hydrogen energy affordable for Australian households.

After reading the message, the overall support for hydrogen question was repeated for the respondents in each of the four message groups (the control group skipped this question).

The sections that followed included questions about attitudes towards using hydrogen for energy in Australia, and trust in particular groups to act in the best interest of the consumer if a hydrogen economy was to be developed in Australia. The remaining sections covered respondent characteristics that were not related to hydrogen such as their climate change beliefs, environmental identity, innovator category, and household and demographic attributes.

3.2. SAMPLING

The national survey was conducted using a panel of participants provided by Q & A Market Research. This approach enabled responses to be collected from a range of people across Australia. Non-probabilistic quotabased sampling was used to select participants based on their age, gender, and state of residence. The quotas were determined using the characteristics of the Australian population from the 2016 Census data.

The market research company reported that 11,089 people started the survey, of which 3,405 did not pass the data screening questions because their quotas were already full, 943 were screened out because they failed internal consistency checks, 3,670 started but did not finish, and 51 were manually removed for failing logic checks. Information on the number of people invited to take the survey is not available due to the recruitment process used by the panel provider, which uses generic invitations for participants to take surveys then allocates specific surveys using dynamic sampling algorithms. This means true response rates are unable to be determined. In total, 3020

fully completed surveys were received after the market research company and the lead author cleaned the data. The data was collected between 29th January and 20th February 2021.

3.3. ANALYSIS

For the purposes of this report, descriptive statistics are presented along with appropriate tests of differences between groups (e.g. ANOVAs, t-tests, chi-square tests), the details for which are provided in the relevant sections below. All analyses were conducted in IBM SPSS Statistics v26.

3.4. RESPONDENT CHARACTERISTICS

The final 3020 respondents, approximated the age, gender, and state of residence characteristics sought by the quota sampling (Table 1). However, when compared to the Australian population (<u>Appendix 1 A</u>, Table 1&2), the sample overrepresented people with higher education (41.0% in this study had a Bachelor degree or higher, compared to 26.7% in the Australian population), and were more likely to have been born in Australia (74.0% in this study compared to 66.7% in the Australian population). Other demographic comparisons have not been assessed.

Characteristic	Frequency (<i>n</i>)	Percent (%)	Australian population %
Gender ^a			
Male	1463	48.4	49.3
Female	1543	51.1	50.7
Transgender Female	6	.2	n/a
Transgender Male	4	.1	n/a
Gender Variant/Non-Conforming	4	.1	n/a
TOTAL	3020	100.0	
State ^a			
NSW	947	31.4	32.0
VIC	755	25.0	25.3
QLD	594	19.7	20.1
SA	254	8.4	7.2
WA	310	10.3	10.6
TAS	71	2.4	2.2
NT	32	1.1	1.0
ACT	57	1.9	1.7
Age Group ^b			
18 – 34 years	899	29.8	33.4
35 – 54 years	1026	34.0	32.8
55+ years	1095	36.3	33.8
	Min	Max Mear	ו SD
Age (years)	18	91	47.8 17.4

^aSource: Australian Bureau of Statistics (2020) SEW data; available from abs.gov.au ^bSource: Australian Bureau of Statistics 2016 Census data; available from abs.gov.au

4. Results

4.1. INITIAL KNOWLEDGE AND AWARENESS OF HYDROGEN

The first question in the main section of the questionnaire asked respondents, "*When you hear the word hydrogen what are the first things that come to mind?*". A content analysis was used to categorise the responses (Table 2). For many respondents (~46%), the word "hydrogen" makes them think of chemistry or chemicals (or chemical states). Around 20% of respondents said they think of power or energy, and a similar proportion mentioned water. Less than 10% mentioned hydrogen bombs, while 6% referred to the properties of hydrogen (such as it being flammable, explosive, and/or lighter than air). Only 5% indicated they did not know or have any thoughts when they hear the word hydrogen.

			% of
Category	Example responses	n	respondents ^a
	a chemical; atom and elements; first		
Chemical/chemistry/	element on the periodic table; science;		
element/state	chemistry class in school	1373	45.5
	a fuel; a source of energy; alternative		
Energy/power/fuel(s)	power source	660	21.9
Water	water; part of water; emits water	627	20.8
Bomb/nuclear weapon	bomb; nuclear weapon; Hiroshima	281	9.3
Hydrogen properties	flammable gas; lighter than air; explosive	180	6.0
Nothing/none/don't know	don't know; I am not sure; I have no idea	152	5.0
	fresh air; part of the air we breathe; a		
Air/atmosphere	compound in our atmosphere	102	3.4
	balloons; gas used to blow up balloons; hot		
Balloons	air balloons	63	2.1
	Hindenburg disaster; blimp; used in early		
Hindenburg/blimp/	airships; has been used to fly dirigibles;		
airships/dirigibles/ zeppelin	Zeppelin blimps exploding	56	1.9
	rocket fuel; used to remove sulfur from		
	fuels; used in industry; used for a variety of		
Other uses	purposes; cleaning	44	1.5
	a lot of wind farms; essential for all life; air		
	pollution; innovation; ammonia production;		
Other	contamination; cost; fracking	355	11.8

Table 2. What people think of when they hear the word hydrogen

^a Respondents may have written multiple responses across different categories, making the total >100%

Five questions asked respondents about their objective knowledge of hydrogen (Table 3). Less than 6% of respondents correctly answered all 5 questions. The question that received the highest number of correct responses (60%) asked whether hydrogen can be stored as a liquid. In contrast, less than 20% knew that hydrogen is not available naturally in its pure form. Compared to the 2018 survey, fewer people in the 2021 survey answered each question correctly.

Table 3. Objective knowledge of hydrogen properties

	Ye	es	N	0	l do no	ot know	2018 ARENA Survey % correct
	n	%	n	%	n	%	
Is hydrogen heavier than air at							
room temperature? [Correct answer	610	20.2	031	30.8	1/70	10.0	38.0
= Noj	010	20.2	901	30.0	1479	49.0	30.0
pure form? [Correct answer = No]	1111	36.8	582	19.3	1327	43.9	21.0
Does hydrogen smell? [Correct							-
answer = No]	409	13.5	1358	45.0	1253	41.5	55.9
Is hydrogen flammable in air?							
[Correct answer = Yes]	1505	49.8	386	12.8	1129	37.4	52.8
Can hydrogen be stored as a							
liquid? [Correct answer = Yes]	1816	60.1	209	6.9	995	32.9	60.3
Correct responses to knowledge q	uestions					n	%
0/5						582	19.3
1/5		548	18.1				
2/5		749	24.8				
3/5		592	19.6				
4/5						375	12.4
5/5						174	5.8

Despite objective knowledge being lower in the 2021 survey than the 2018 results, self-reported subjective knowledge about hydrogen was higher in 2021 for all statements except "*How hydrogen is produced*". In the 2021 survey, there was a slight increase in the number of people who said they had never heard of how hydrogen is produced, and a slight increase in the number of people who said they know "*how hydrogen is produced*" well enough to be able to describe it to a friend (Table 4). Comparing these results, it suggests that while only a small percentage of the population are confident about their knowledge, there is a growing awareness of hydrogen compared to the previous survey, with the exception of knowledge about hydrogen production. In both surveys, respondents were most familiar with hydrogen vehicles.

Table 4. Subjective knowledge of hydrogen production and uses

How much do you know about the following? ^a		never I of it	l have h i	eard of t	l know about it and could describe it to a friend		
	2021 (%)	2018 (%)	2021 (%)	2018 (%)	2021 (%)	2018 (%)	
How hydrogen is produced	53.4	51.3	37.5	40.0	9.1	8.7	
The use of hydrogen fuel cells in vehicles	38.6	40.7	53.1	52.7	8.2	6.5	
The use of hydrogen fuel cells in homes	64.4	69.6	30.7	25.9	5.0	4.6	
Hydrogen as an energy storage medium for							
electricity	52.9	63.2	40.1	31.6	7.0	5.2	
Hydrogen refuelling stations	55.3	59.4	38.6	35.5	6.2	5.1	
Burning hydrogen as a replacement for natural							
gas	47.4	59.7	45.0	35.3	7.6	5.1	

^aSample sizes: 2021 *N* = 3,020; 2018 *N* = 2,785

When asked about whether they had heard about more specific hydrogen discussions occurring in Australia, almost 40% reported they had heard about hydrogen in the media (Table 5). This result could explain the higher results for some of the subjective knowledge statements (Table 4). In addition, twenty seven percent (27%) reported they had heard about a hydrogen production project in Australia and almost 21% said they had heard about a blended project. However, the National Hydrogen Strategy was the least well known, with almost three quarters (73%) of respondents indicating they had never heard of the Strategy.

A chi square test (which indicates whether people answer a categorical question differently to the expected distribution) showed there was a significant association between State/Territory and the statement "*I have heard about a hydrogen project in Australia*" (χ^2 (14) = 24.830, p = .036). This means there were more responses in one of the three categories (yes/no/unsure) than expected. More people in Tasmania (51.0% more than expected), Northern Territory (26.4%), New South Wales (9.7%), South Australia (9.2%), and the Australian Capital Territory (3.9%) had heard about a hydrogen project in Australia (Appendix 1 B, Table 8). There were no significant associations between State and Territories and all remaining statements (See Table 5).

There has been discussion about using hydrogen		es	N	0	Unsure	
in Australia recently. Please respond to the following statements.	n	%	n	%	n	%
I have heard about a project blending natural gas and						
hydrogen for domestic use	628	20.8	2007	66.5	385	12.7
I have heard about a hydrogen production project in						
Australia	817	27.1	1808	59.9	395	13.1
I have heard about hydrogen in the media	1171	38.8	1528	50.6	321	10.6
I have heard about the National Hydrogen Strategy	443	14.7	2202	72.9	375	12.4

Table 5. Awareness of hydrogen discussions in Australia

4.2. SUPPORT FOR HYDROGEN

Support for hydrogen was tested at three time points in the survey: at the beginning (Time 1), before respondents were primed with a communication message (see Methods) about hydrogen (Time 2), and immediately after the message (Time 3). This provided an opportunity to test the impact of the different messages on support for hydrogen. The results suggest that participants were a little more than "slightly supportive" (just above 5 on the 7-point scale) of hydrogen as a possible solution for energy and environmental challenges at Time 1, and that support increased to close to "supportive" (a little under 6 on the 7-point scale at Time 2) as they progressed through the survey (Table 6). Very few were unsupportive (Figure 4). Although the average (mean) response increases slightly again at Time 3, there was only one group for which this was a significant shift (discussed below under "Message effects").

Table 6. Support for hydrogen

Overall, how do you feel about hydrogen as a possible							
solution for energy and environmental challenges? ^a	Tin	ne 1	Tir	ne 2	Tim	Time 3 ^b	
	n	%	n	%	n	%	
Very supportive	631	20.9	971	32.2	864	35.7	
Supportive	882	29.2	1149	38.0	932	38.6	
Slightly supportive	458	15.2	556	18.4	378	15.6	
Neither supportive nor unsupportive	963	31.9	253	8.4	177	7.3	
Slightly unsupportive	44	1.5	37	1.2	21	0.9	
Unsupportive	24	.8	22	.7	21	0.9	
Very unsupportive	18	.6	32	1.1	24	1.0	
	Mean	SD	Mean	SD	Mean	SD	
Average response ^b	5.31	1.25	5.85	1.14	5.94	1.13	

^a Measured on a 7-point rating scale, where 1 = very unsupportive, 4 = neither supportive nor unsupportive, 7 = very supportive.

^b Not asked for control group; n = 2,417

Figure 4. Support for hydrogen at three time points in survey ^aControl group not included in T3

4.2.1. Support for hydrogen by State

Overall, support for hydrogen was similar across all States. Although there was more variation in the Time 1 measurement early in the survey (Figure 5), there were no statistically significant differences in the mean State and Territory scores at each time point (Table 7).

Figure 5. Support for hydrogen by State and Territory over the three time points

Table 7. Support for hydrogen by State and Territory

		Time 1			Time 2 Time 3ª				
State	n	Mean	SD	n	Mean	SD	n	Mean	SD
NSW	947	5.36	1.27	947	5.83	1.18	732	5.89	1.15
VIC	755	5.20	1.24	755	5.84	1.13	611	5.95	1.13
QLD	594	5.28	1.27	594	5.80	1.21	481	5.95	1.15
SA	254	5.39	1.20	254	5.96	0.99	203	6.07	0.94
WA	310	5.35	1.26	310	5.88	1.06	261	6.00	1.02
TAS	71	5.39	1.15	71	5.83	1.17	58	5.91	1.25
NT	32	5.66	1.29	32	6.06	1.27	27	5.93	1.47
ACT	57	5.65	1.16	57	6.02	1.08	44	5.91	1.34

^a Measured on a 7-point rating scale, where 1 = very unsupportive, 4 = neither supportive nor unsupportive, 7 = very supportive.

^b Not asked for control group; n = 2,417

4.2.2. Differences in support for hydrogen by gender and political party preferences

In the Time 1 measure, male respondents expressed stronger support for hydrogen (M = 5.65, SD = 1.23) than female respondents (M = 4.99, SD = 1.19; t(3004) = 14.82, p < .01). This was a medium effect size (Cohen's d = 0.55). By Time 2, the gap narrowed considerably (the effect size dropped to a small effect; Cohen's d = 0.25), although males were still more supportive (M = 6.00, SD = 1.13) than females (M = 5.71, SD = 1.15).

To examine differences in support for hydrogen between political party preferences, respondents were split into four groups according to who they would vote for if a federal election were to be held on the next Sunday. The groups were: (1) Liberal/National Party voters (n = 1,222), (2) Labor voters (n = 1,010), (3) Greens voters (n = 376), and (4) "Other" political party voters (n = 412). For all three measures of support for hydrogen (Time 1 – Time 3), the "Other" voters expressed significantly lower support for hydrogen than all other groups (Figure 6) and <u>Appendix 1 D</u>, Table 9), although the level of support for hydrogen between the first three groups at any of the different times.

Figure 6. Level of support for hydrogen by political party preference

4.2.3. Relationships between support for hydrogen and knowledge of hydrogen

Initially, in the first measure of support for hydrogen (Time 1), people with a higher score on the objective knowledge questions about hydrogen were more supportive than those who did not answer the majority of knowledge questions correctly (Figure 7; F(5,3014) = 50.241, p < .01). This was a similar finding to work by Hobman and Ashworth (2013) when investigating public support for a range of energy technologies, and to the findings of the ARENA study (Lambert & Ashworth, 2018).

While some of these effects remained in the second measure of support for hydrogen (Time 2; F(5,3014) = 10.543, p < .01), respondents who scored lower on the objective knowledge scores increased their support for hydrogen in Time 2. This supports the suggestion that knowledge plays an important role in increasing support. In comparison, people who already know more (i.e. scored highly on the knowledge questions) did not change their support for hydrogen substantially in Time 2. Full details of the ANOVA used to explore this relationship are presented in <u>Appendix 1 D</u>, Table 17.

Figure 7. Relationship between objective knowledge score and support for hydrogen

4.2.4. Reasons for selecting the midpoint

Since 45% of the respondents in the 2018 ARENA study selected "neither supportive nor unsupportive" on the *hydrogen support* scale, we added a question to explore the reasons why respondents chose the midpoint. Research by Nadler, Weston, and Voyles (2015) suggests there are many reasons for midpoint selection. In this study, we adapted their work to create a list of six possible reasons. We also included "other" to capture any additional reasons that were not on our list. There is discussion in social scientific literature about the use of midpoint, it is considered best to increase the response options (e.g. change a 5-point scale to a 7-point scale to improve the sensitivity of the scale; (Chyung et al., 2017)) and to understand how respondents interpret the meaning of the midpoint (Nadler et al., 2015). This approach provides greater insights into the respondents' perceptions of the topic.

The proportion of respondents who selected the midpoint decreased across the three time periods. At Time 1 32% of respondents chose this option. However, by Time 2 the number selecting neither agree nor disagree had dropped to 8%, and to 7% by Time 3. This suggests that participants felt more able to form an opinion as they completed the questionnaire, which is likely to result from the background information they were provided with. However, it is important to consider that some decrease may have resulted from "survey effects", meaning that it is possible some respondents learned that selecting the midpoint results in an additional question and wanted to avoid this when the question was repeated.

The most common reason for the midpoint selection at Time 1 was *I do not know enough about hydrogen to decide* (Table 8). While this remained the case in Time 2 and Time 3, the proportion of respondents choosing *there are pros and cons of hydrogen, which makes me support neutral* increased from 8% in Time 1 to 28% (Time 2) and 29% (Time 3). This also supports the idea that respondents' opinions about hydrogen were developing throughout the survey, as new information was presented to them.

4.2.5. Other reasons for midpoint selection

Open-ended responses to "Other reasons for selecting the midpoint" were examined and recoded where appropriate (e.g. "I don't know much about it" was recoded into the category "I do not know enough about hydrogen to decide". The number of open-ended responses were small but included comments about environmental concerns, safety, and distrust of government (<u>Appendix 1 D</u>, Table 10).

	Tir	ne 1	Tii	ne 2	Tin	ne 3ª
Reason	n	%	n	%	n	%
I do not know enough about hydrogen to decide	710	73.7	110	43.5	68	38.4
I do not have any feelings either way (positive or negative)	72	7.5	24	9.5	18	10.2
There are pros and cons of hydrogen, which makes my support						
neutral	76	7.9	70	27.7	52	29.4
I did not understand the question	9	0.9	5	2.0	5	2.8
I have no opinion on this issue	75	7.8	27	10.7	11	6.2
I don't care	15	1.6	11	4.3	11	6.2
Other reason	6	0.6	6	2.4	12	6.8
Total number of respondents who selected midpoint	963	100.0	253	100.0	177	100.0
Percent of all respondents in survey ($n = 3,020$)		31.9		8.4		5.9

Table 8. Reasons for selecting the midpoint

^a Not asked for control group

4.2.6. Current gas users' and non-users' support for hydrogen

Since blending hydrogen into natural gas is likely to be an initial step in the development of the hydrogen industry in Australia, we explored differences in the level of support for hydrogen between respondents who have gas (mains) supply and those who do not. On average, respondents who are currently connected to the gas supply (N = 1774) were more supportive of hydrogen (Time 1: M = 5.36, SD = 1.24; Time 2: M = 5.89, SD = 1.11) than respondents who are not connected (N = 1246; Time 1: M = 5.24, SD = 1.27; Time 2: M = 5.79, SD = 1.19). While an independent-samples t-test showed there were statistically significant differences between the two groups at the two time points (Figure 8, see <u>Appendix 1 D</u>, Table 13 for t-test results), the effect sizes (.09 and .08, respectively) indicate this is a trivial effect. This suggests that support for hydrogen is not related to whether households are connected to the current gas supply.

Figure 8. Gas supply users' and non-users' support for hydrogen at T1 (left) and T2 (right)

4.2.7. Comparison with 2018 ARENA data

Support for hydrogen was compared with data from the 2018 ARENA survey to evaluate any change in public sentiment. The Time 1 measure from the 2021 National Survey was used for the comparison, as this was in the same position as the same question in the 2018 ARENA survey (i.e. early in the order of the questions). The response scale for the ARENA data was expanded from a 5-point scale to 7-points to enable the statistical comparison (see <u>Appendix 1.C</u> for the formula used to expand the scale). There was a small but significant increase in the level of support for hydrogen between the 2018 ARENA survey (M = 4.99, SD = 1.20) and the 2021 National Survey (M = 5.31, SD = 1.25), t(5803)=10.20, p < .01, Cohen's d = 0.26 (Figure 9).

Figure 9. Comparison of support for hydrogen between 2018 and 2021 surveys

4.2.8. Message effects on support for hydrogen

The effect of the four message types on support for hydrogen was examined to explore whether particular messages would resonate better with respondents than others. The four types were labelled: (1) environmental message (transition), (2) economic message (national), (3) environmental message (100% renewable energy), and (4) economic message (household) (Table 9).

Between Time 1 and Time 2, the level of support for hydrogen increased for all message groups (Figure 10). After reading the messages, only one group recorded a small but statistically significant increase in their level of support. A one-way ANOVA and post-hoc comparisons revealed a small positive effect of the 3^{rd} message about green hydrogen on the level of support at T3 compared to the control group at T2 (mean difference = .27; F(4,3915) = 11.05, p < .01). The mean scores for the other message groups were not significantly different from the control group at T2. This result suggests that messages about emissions-free hydrogen production using renewable energy is likely to resonate best with Australian audiences (at least, those similar to the study sample), however further research on this topic is required to delve deeper into message framing for hydrogen support to confirm this effect.

Table 9.	Support f	or hydrog	en by me	essage group
----------	-----------	-----------	----------	--------------

	Time 1		Time 2		Time	3 a
Message group	Mean	SD	Mean	SD	Mean	SD
M1: Blending H2 is a first step	5.25	1.27	5.80	1.18	5.76	1.17
M2: Economic benefits	5.33	1.27	5.92	1.11	6.03	1.1
M3: 100% green H2	5.36	1.23	5.87	1.15	6.14	1.1
M4: Govt/industry making hydrogen affordable	5.34	1.24	5.80	1.14	5.85	1.1
Control group (no message)	5.30	1.27	5.87	1.13	n/a	n/a

Figure 10. Message effects on support for hydrogen

4.3. PERCEPTIONS OF HYDROGEN PRODUCTION AND USE

After the Time 1 measure of support for hydrogen, all respondents were asked to watch the ARENA video about renewable green hydrogen and read information about how hydrogen is produced using fossil fuels and carbon capture and storage, and renewable electricity (see Methods, and the full survey in <u>Appendix 2</u>). As in the 2018 ARENA survey, respondents were asked to indicate the extent to which they agree or disagree with a set of statements about their perceptions of hydrogen production processes and hydrogen use in Australia (Table 10).

Responses mirrored the 2018 ARENA survey responses albeit with stronger agreement. Respondents were most in agreement that "hydrogen should be used increasingly for Australia's energy supply" (average response was between "agree" and "slightly agree"). While still positive, respondents showed least agreement with producing hydrogen from fossil fuels and CCS, and slightly more agreement with it as an interim step. The overall response to producing hydrogen "with fossil fuels and carbon capture and storage indefinitely" was almost neutral.

Table 10. Perception of hydrogen production and use

	202	2021		8
Statement	Mean ^a	SD	Mean ^b	SD
Hydrogen should be used increasingly for energy supply in Australia	5.75	1.22	5.06 ^{c*}	1.23
Using hydrogen will reduce greenhouse gas emissions	5.74	1.22	-	-
The use of hydrogen contributes to climate protection	5.55	1.30	4.76*	1.28
Hydrogen should be produced using renewable energy and electrolysis only	5.31	1.37	4.94*	1.24
Hydrogen should be produced using fossil fuels with carbon capture and				
storage as an intermediate step while transitioning to renewables	4.69	1.57	4.27*	1.36
Hydrogen should be produced using fossil fuels with carbon capture and				
storage indefinitely	4.16	1.77	3.70*	1.52

^a Measured on a 7-point rating scale, where 1 = strongly disagree, 4 = neither agree nor disagree, 7 = strongly agree; N = 3,020.

^b Scale was expanded to 7 points for this analysis. Original scale used 5 points.

^c *n* = 906.

4.4. EXPORT & FUTURE ENERGY CONSIDERATIONS

The following section presents results from the first of the two streams of questions, which related to hydrogen export and preferences for future energy sources (n = 1,513).

4.4.1. Agreement with potential future energy sources and technologies

To better understand where hydrogen fits in the range of energy generation technologies and sources, respondents were asked "*How strongly do you agree or disagree with the use of the following energy sources and related technologies as potential ways of generating Australia's future energy needs?*". Consistent with earlier surveys conducted by the research team, participants agreed most with the use of renewable energy (solar PV and wind; Table 11). Respondents also agreed with the use of hydrogen, which was rated at a similar level to wind energy.

Table 11. Agreement with potential future energy sources

Energy source/technology	Mean ^a	SD
Solar PV	5.89	1.22
Wind	5.84	1.30
Hydrogen	5.80	1.15
Gas	4.53	1.55
Biomass	4.49	1.19
Gas or coal with carbon capture and storage	4.19	1.64
Nuclear (for power)	3.95	1.98
Oil (e.g. diesel/petrol for transport)	3.80	1.74
Coal	3.58	1.86

^aMeasured on a 7-point rating scale, where 1 = strongly disagree, 4 = neither agree nor disagree, 7 = strongly agree; n = 1,513.

In contrast, more respondents disagreed with nuclear, oil, and coal (Figure 11). Biomass received the highest proportion of "neither agree nor disagree", which suggests that respondents do not yet know enough about this particular energy source to form an opinion. These results are similar to previous findings of surveys conducted across Australia and other countries (Ashworth, Sun, Ferguson et al. 2019; Jeanneret, Muriuki, and Ashworth (2014), which also showed respondents agreed with renewables, disagreed with nuclear and coal and were more ambivalent about CCS. It is worth noting that even in 2017 when the last survey was performed, hydrogen was not included in the list of options. This demonstrates that while hydrogen has been used for many years it is only recently, as the low carbon options are emerging, that it has become a focus of social acceptance research.

There were no meaningful correlations between agreement with these energy sources/ technologies and age (all correlations, including statistically significant relationships, were < (.07)). While there are some statistically significant differences between males and females in the extent to which they agree with different energy sources for Australia, these differences are also very small (<u>Appendix 1 E</u>, Table 41).

4.4.1.1. Differences between States

Tests for differences between States and the level of agreement with the energy sources and technologies revealed overall there were very few differences (<u>Appendix 1 E. Agreement with potential energy sources by State and Territory</u>). The primary differences were between Western Australian respondents and those from other states on four energy sources. The tests showed that Western Australian respondents:

- Disagreed more strongly with the use of coal than Queensland and New South Wales respondents,
- Disagreed more strongly with the use of nuclear power than New South Wales and South Australian respondents,
- Were more in favour of wind than Queensland residents, and
- Were more in favour of solar PV than NSW residents.

Although these results are statistically significant, the Cohen's *d* effect size results indicate these differences are small. While the statistical analysis used to test these differences is valid for unequal sample sizes, the large differences in the number of respondents in the states (e.g., NSW = 947, NT = 32) means the statistical power of these analyses is reduced, and further research is necessary for these results to be conclusive.

4.4.1.2. Differences between political party preferences

Differences between respondent's voting preferences and their agreement with potential future energy sources was compared. Although agreement with the various energy sources and technologies was similar across the political party preferences (Figure 12), one-way ANOVA tests revealed some statistically significant differences between the party preference groups (See <u>Appendix 1 D</u>, Table 30 - 40, summarised in Table 12 below).

Figure 12. Average (mean) agreement with potential future energy sources by political party preference. Note: Agreement was measured on a 7-point rating scale, where 1 = strongly disagree, 4 = neither agree nor disagree, 7 = strongly agree; n = 1,513.

For the three main party preference groups (Liberal/National, Labor, or Greens), there were no statistically significant differences in their level of agreement with hydrogen and biomass. For hydrogen, respondents in these three groups expressed slight-moderate agreement with hydrogen (rating 5.80-5.96 on the 7-point scale) and almost neutral/very slight agreement with biomass energy (rating 4.14-4.58 on the 7-point scale). However, respondents with voting preferences in the "Other" categories rated their agreement with both hydrogen and biomass as slightly lower (although still positive) than the other three groups. Since agreement with hydrogen and support for hydrogen (reported earlier) does not split across political party preferences, this suggests that public support for hydrogen is likely to span the main political divides for voters.

For other energy sources and technologies, respondents were more divided across their party preferences. Coal was the only energy source for which all groups (including "Other") differed in their agreement, with Liberal/National voters slightly agreeing, and all others disagreeing to various extents (Green party voters disagreed the most). Differences between all three of the top party preference groups were also seen for gas, gas or coal with carbon capture and storage, and oil.

Table 12. Agreement with potential future energy sources by voting preferences

	Liberal/National		Labor		Greens		Other	
Statement	Mean ^a	SD						
Hydrogen	5.82 _a	1.09	5.96 _a	1.00	5.80 _a	1.32	5.38b	1.40
Coal	4.19a	1.67	3.19₀	1.83	2.52c	1.82	3.67 _d	1.85
Gas	4.98 _a	1.30	4.37 _b	1.58	3.64 _c	1.67	4.41 _b	1.56
Gas or coal with carbon capture and								
storage	4.63a	1.46	4.06b	1.68	3.42c	1.73	3.95b	1.61
Wind	5.64a	1.35	6.06b	1.10	6.29b	1.03	5.44a	1.57
Solar PV	5.75a	1.20	6.06b	1.12	6.18b	1.08	5.59a	1.48
Oil (e.g. diesel/petrol for transport)	4.27a	1.59	3.60b	1.71	2.86c	1.77	3.78b	1.78
Nuclear (for power)	4.53a	1.83	3.62b	1.95	3.27b	1.93	3.65b	2.08
Biomass	4.58a	1.15	4.52a	1.20	4.46a	1.21	4.14b	1.22

^a Measured on a 7-point rating scale, where 1 = strongly disagree, 4 = neither agree nor disagree, 7 = strongly agree; n = 1,513.

Note: Values in the same row and subtable not sharing the same subscript are significantly different at p<.05 in the two-sided test of equality for column means. Cells with no subscript are not included in the test. Tests assume equal variances and are adjusted for all pairwise comparisons within a row of each innermost subtable using the Bonferroni correction.

4.4.2. Importance of export considerations

Respondents were presented with a list of particular considerations if Australia were to start exporting hydrogen. Of these, safety issues were rated the most important (

Table 13). Although "*minimising the overall use of water in hydrogen production*" was rated the lowest, the overall score (M = 3.80, SD = 1.04) was only slightly below 4 on the 5-point scale, which represented "very important" on the response scale.

Five of the statements used in the 2021 survey were modified from the 2018 ARENA wording for clarity and consistency in the statements (

Table 13). Compared to the 2018 ARENA results, respondents in the 2021 survey felt all factors were more important than the 2018, except for "*minimising the overall use of water in hydrogen production*" (Figure 13).

	2021		201	8
If Australia was to start exporting hydrogen how important are the				
following considerations to you?	Mean ^a	SD	Mean ^a	SD
Ensuring safety in the way hydrogen is transported ^b	4.46	.74	3.84*	0.95
Ensuring safety of the production process ^b	4.44	.77	4.16*	0.91
Creating new job opportunities ^b	4.31	.82	3.80*	0.94
Increasing economic benefits to Australia	4.27	.84	3.69*	0.95
Minimising the environmental impacts of the production and transport				
process	4.27	.85	4.09*	0.96
Supporting the development of a local manufacturing industry	4.23	.81	3.82*	0.9
Ensuring availability of a domestic hydrogen supply	4.23	.85	3.82*	0.93
Contributing to the world's emissions reductions	4.19	.94	3.87*	0.99
Creating regional opportunities through the production of hydrogen	4.13	.88	3.77*	0.93
Ensuring Australia is an early mover in the export market ^b	4.10	.92	3.67*	1.01
Retaining the rights of intellectual property for hydrogen production	4.03	.99	3.66*	1.03
Minimising the overall use of water in hydrogen production ^b	3.80	1.04	3.88	0.95

Table 13. Importance of export considerations

*p < .01

^aMeasured on a 5-point scale where 1 = not at all important, 5 = extremely important; n = 1,513. ^bWording differed slightly between surveys.

Figure 13. Importance of export considerations

4.4.3. Support for hydrogen export and facilities

Overall, respondents slightly to moderately agreed with Australia exporting hydrogen (M = 5.4 on the 7-point scale). However, they were almost neutral about the idea of building an export facility near them (Table 14). Compared to the 2018 ARENA results, the proportion of respondents who supported the idea of Australia exporting hydrogen increased from 72.1% in 2018 to 80.4% in 2021. At the same time, the proportion of respondents opposed to the idea of Australia exporting hydrogen doubled to 10.4%.

In contrast, the proportion of respondents who supported the idea of a hydrogen export facility being built next to them increased from 38.4% in 2018 to 52.4% in 2021, while opposition remained almost the same (22% in 2018 and 22.9% in 2021). This change is largely a result of fewer respondents selecting the midpoint in the scale¹ and suggests a shift toward greater public acceptance of hydrogen export facilities being built in their vicinity.

Comparing the two sets of responses, more people disagreed with the second statement about the idea of a hydrogen export facility being built nearby (Figure 14). An independent-samples t-test showed that males agreed slightly more with the idea of Australia exporting hydrogen (M = 5.65, SD = 1.65) than females (M = 5.43, SD = 1.52; t(1504) = 2.688, p = .007), although the effect size statistic indicates this difference is trivial (Cohen's d = 0.139). Likewise with the statement about a hydrogen facility being built in their vicinity, males agreed slightly more (M = 4.85, SD = 1.75) than females (M = 4.29, SD = 1.64; t(1487.40) = 6.415, p < .001), however the effect size indicates this difference is also small (Cohen's d = 0.330).

There was no statistically significant difference between the States in the respondents' ratings of these two variables. There was also no difference in the responses of participants who live in metropolitan or regional areas.

¹ Substantially fewer respondents selected the midpoints for these two questions in the 2021 survey (9.2% compared to 22.9% in 2018 for the first statement, and for the second statement 24.8% selected the midpoint compared to 37.8% in 2018),

Table 14. Support for hydrogen export and facilities

	I support the idea of Australia exporting hydrogen		I support the idea of a hydrogen expor facility being built near me			
	n	%	п	%		
Strongly agree	461	30.5	192	12.7		
Agree	539	35.6	348	23.0		
Slightly agree	217	14.3	252	16.7		
Neither agree nor disagree	139	9.2	375	24.8		
Slightly disagree	55	3.6	133	8.8		
Disagree	18	1.2	98	6.5		
Strongly disagree	84	5.6	115	7.6		
	Mean ^a	SD	Mean ^a	SD		
Average response	5.54	1.59	4.56	1.72		

Average response5.541.594.561.72^a Measured on a 7-point rating scale, where 1 = strongly disagree, 4 = neither agree nor disagree, 7 = stronglyagree; n = 1,513.

A one-way ANOVA (<u>Appendix 1.E</u>) showed there are some differences in the level of agreement between political party preference groups for both statements, however these differences are also very minor.

riguro i il capportior rigurogon oxportana laon

4.5. DOMESTIC USE

There were 1,507 respondents in the second stream of questions, which asked about the use and acceptance of hydrogen for domestic purposes. Before starting these questions, respondents were reminded about the information they saw in the video that explained hydrogen could be used in domestic applications. Further information was also provided to describe how domestic use of hydrogen can reduce emissions, and that trials with up to 20% hydrogen blends have already been trialled in Europe (Appendix 1 F. Domestic use considerations).

4.5.1. Willingness to use hydrogen for domestic applications

Overall, respondents indicated they were slightly to moderately willing to use hydrogen for all of the domestic purposes presented, however they were most willing to use hydrogen for hot water heating (Table 15). Five of these six applications were also measured in the 2018 ARENA survey (although the ARENA measure asked respondents about their level of "happiness" to use hydrogen, rather than "willingness", which was the original language from focus groups). The 2021 results were higher than the 2018 measures, with the largest differences occurring in hot water heating and cooking applications. The results suggest there may have been a small but positive shift in public perceptions of domestic use of hydrogen. However, it will be important to continue monitoring these perceptions as the public receives further information about the challenges of the technological changes needed to deliver hydrogen to people's homes.

Independent-samples t-tests showed no differences between males and females in their willingness to use hydrogen for space heating, hot water heating, or cooking. There were small differences between the two genders in their willingness to use hydrogen for the remaining three applications, with males slightly more willing than females (<u>Appendix 1 F. Willingness to use hydrogen for domestic applications by gender</u>).

		2021		8 ^c
If hydrogen were available today, how willing would you be to use it in your home for the following uses?	Mean ^a	SD	Mean ^b	SD
Hot water heating	5.71	1.42	5.07*	1.47
Cooking	5.57	1.47	4.90*	1.28
On-site electricity generation	5.53	1.44	5.03*	1.22
Space heating	5.45	1.47	4.91*	1.22
Using natural gas that contains some hydrogen (i.e. a blend)	5.37	1.47	5.04*	1.16
For driving hydrogen fuel cell electric vehicles	5.34	1.58	-	-

Table 15. Willingness to use hydrogen for domestic applications

^{*}p < .01

^a Measured on a 7-point scale where 1 = very unwilling, 4 = neither willing nor unwilling, 7 = very willing; n = 1,507^b Scale was expanded to 7 points for this analysis. Original scale used 5 points. ^c n = 906.

4.5.2. Importance of factors related to domestic use of hydrogen

As in the ARENA survey, *safety* was rated as the most important factor in determining people's willingness to use hydrogen in their homes (Table 16). Unlike many of the questions in the survey, this question used a 5-point scale, where 5 = "extremely important". While some of the factors changed in their order of importance between the two surveys, all factors (other than safety) received scores between "somewhat important" (3) and a little higher than "very important" (4).

Compared to the 2018 survey, there was no change in the importance of *health benefits*, *odour for detecting leaks*, or *proven demonstration projects*. The factors that increased in importance in the 2021 survey were *safety*, *the cost of hydrogen*, *the cost to modify appliances*, *no greenhouse gas emissions*, and *the level of inconvenience to change over*. In contrast, the importance of *being able to choose between gas or electricity for cooking* and *flame colour/visibility* decreased in the 2021 survey. There were also some differences between males and females in their ratings of importance of these factors (<u>Appendix 1 D</u>, Figure 5). It is important to note that, although statistically significant, most of these changes in scores between surveys and between genders represent relatively small shifts.

	202	1	2018	
How important are the following factors in determining your willingness to use hydrogen in your home?	Mean ^a	SD	Mean ^b	SD
Safety	4.50	.83	4.42*	0.819
Reliability of energy supply	4.27	.87	-	-
Health benefits (no carbon monoxide emissions)	4.21	.94	4.17	0.864
The cost of hydrogen to fuel your home	4.18	.91	3.88**	0.879
Odour for detecting leaks	4.08	1.01	4.04	0.948
The cost to modify appliances	4.02	.96	3.67**	0.95
No greenhouse gas emissions	3.98	1.05	3.89*	1.022
Proven demonstration projects	3.94	.98	3.89	0.918
The level of inconvenience to change over from current systems and				
appliances	3.64	1.08	3.34**	1.05
Being able to choose between gas or electricity for cooking	3.56	1.17	3.67*	1.02
Flame colour/visibility	3.42	1.24	3.53*	1.127

Table 16. Importance of factors in determining willingness to use hydrogen in the home

*p < .05, **p < .01

^a Measured on a 5-point scale where 1 = not at all important, 5 = extremely important; n = 1,507

^b n = 906

4.5.3. Support for domestic hydrogen facility

Respondents indicated they "slightly agree" with the idea of a hydrogen facility being built near them to provide hydrogen for domestic use (i.e. non-export) (Table 17). The result was slightly higher than their agreement with a hydrogen export facility being built near them (Table 14). This question was not asked in the 2018 ARENA survey.

Table	17.	Support	for do	omestic	hydrogen	facility	being	built nea	ar them
					J	· · · · · · · · · · · · · · · · · · ·			

I support the idea of a hydrogen facility being built near me to provide hydrogen for		
domestic use (i.e. households, transport, industry)	n	%
Strongly agree	276	18.3
Agree	432	28.7
Slightly agree	250	16.6
Neither agree nor disagree	331	22.0
Slightly disagree	80	5.3
Disagree	73	4.8
Strongly disagree	65	4.3
	Mean ^a	SD
Average response	5.01	1.61

^a Measured on a 7-point rating scale, where 1 =strongly disagree, 4 =neither agree nor disagree, 7 =strongly agree; n = 1,513.

4.6. ATTITUDES TOWARDS HYDROGEN

This question used a bipolar, semantic differential scale to measure attitudes towards hydrogen, which presented positive words on one side (the most positive score = +3), and negative words with the opposite meaning on the other side of the scale (-3 being the most negative). For example, respondents rated whether they thought using hydrogen for energy in Australia would be "very useful" (+3) or "very useless" (-3), or somewhere in between (including 0).

Overall, respondents' instrumental and experiential attitudes towards using hydrogen for energy in Australia are positive (Table 18). Instrumental attitudes are more favourable (approximately +2) than experiential attitudes (approximately +1.5), which suggests that respondents see that hydrogen may be a good thing for Australia but as yet, they do not have enough experience of hydrogen to form strongly enthusiastic attitudes towards it.

Overall, do you think using hydrogen for energy in Australia would be:	Mean ^a	SD
Instrumental attitude		
Very useful - Very useless	2.10	1.08
Very beneficial - Very harmful	2.08	1.09
Very worthwhile - Very worthless	2.05	1.11
A very good thing - A very bad thing	2.03	1.12
Composite instrumental attitude score (α = .955)	2.07	1.03
Experiential attitude		
Very inspired - Very uninspired	1.56	1.28
Very proud - Very embarrassed	1.55	1.25
Very happy - Very sad	1.52	1.24
Very calm - Very angry	1.48	1.21
Very unconcerned - Very worried	1.20	1.39
Composite experiential attitude score ($\alpha = .924$)	1.46	1.12
Overall attitude score		
Composite instrumental + experiential attitude score (α = .951)	1.73	1.02

Table 18. Attitudes towards hydrogen

^a Measured on a 7-point bipolar scale, where -3 = (most negative response, e.g. very worthless), 0 = neutral, +3 = (most positive response, e.g. very worthwhile); <math>n = 3,020.

4.7. CLIMATE CHANGE BELIEFS

Respondents were asked about their climate change beliefs in two ways. First, the question used in the 2018 ARENA survey and previous energy technology and CSIRO reports was repeated to understand whether they think climate change is happening now or will happen in the next 30 years. Second, a question used in a previous CSIRO study (Gardner et al., 2010) was repeated to determine how convinced respondents are that climate change represents a real problem for Australia. Most respondents (75.6%) indicated they believe climate change is already happening, which is an increase from the 2018 ARENA survey (70.8%; Table 19). On average, respondents are convinced that climate change represents a real problem for Australia (Table 19). Almost 70% indicated they are "very convinced" or "convinced", and a further 13.6% were "slightly convinced" (Figure 15). Only 4% were "very unconvinced".

Table 19. Climate change beliefs

u believe climate change is happening		201	2018	
n	%	n	%	
2284	75.6	1959	70.3	
280	9.3	248	8.9	
231	7.6	250	9.0	
225	7.5	328	11.8	
How convinced are you that climate change represents a real problem for				
		Mean ^a	SD	
Average response			1.61	
	20 n 2284 280 231 225 sents a real pr	2021 n % 2284 75.6 280 9.3 231 7.6 225 7.5 sents a real problem for	2021 2018 n % n 2284 75.6 1959 280 9.3 248 231 7.6 250 225 7.5 328 sents a real problem for Mean ^a 5.70	

^aMeasured on a 7-point rating scale, where 1 = very unconvinced, 4 = neither convinced nor unconvinced, 7 = very convinced; n = 3,020.

Figure 15. Level of conviction that climate change represents a real problem for Australia

Two analyses were conducted to check whether respondents' beliefs about climate change were related to their support for hydrogen. First, respondents were split into two groups: those who do believe climate change is happening now (n = 2284) and all other respondents (n = 736). An independent-samples t-test was used to check for differences in support of "hydrogen as a possible solution for energy and environmental challenges" between these two groups (Appendix 1 F. Support for hydrogen export and facilities).

In both the Time 1 and Time 2 measures, belief that climate change is happening now was related to greater support for hydrogen (Figure 16). At Time 1, those who believe climate change is happening now were slightly more supportive (M = 5.39, SD = 1.23) than those who do not (M = 5.09, SD = 1.30; t(3018) = -5.544, p < .01), however the effect size was small (Cohen's d = 0.237). In contrast, at Time 2, the gap between those who believe climate change is happening now and those who do not widened. Respondents in the first group increased their support to a moderate level (M = 5.99, SD = 1.06), and while the second group also increased their support (M = 5.42, SD = 1.28), their increase was not as great as the first group (t(1083.83) = -10.891, p < .01). The effect size at Time 2 increased to a moderate level (Cohen's d = 0.485).

The finding that climate change beliefs were related to support for hydrogen was also supported by the correlation between climate change conviction and the two measures of support for hydrogen. In the first measure (Time 1), there was a weak correlation between climate change conviction and support ($r_s = .21$, p < .01). The association between climate change conviction and support increased in the second measure, although it is still considered a weak relationship ($r_s = .35$, p < .01). This suggests that people who already believe climate change

is happening may be more receptive to the idea of using hydrogen in the future, especially as they begin to learn more about the applications and benefits of this energy source. However, it is important to bear in mind that the relationship between climate change beliefs and support for hydrogen is not strong, and that respondents who expressed climate change denial opinions (or are unsure) are also supportive of hydrogen.

Figure 16. Relationship between support for hydrogen (Time 1 and Time 2 measures) and belief that climate change is happening now

4.8. ENVIRONMENTAL IDENTITY

People's sense of their environmental identity (the extent to which they see themselves as being environmentallyfriendly) can influence their behaviours (Fielding, McDonald, & Louis, 2008). To test whether environmental identity is related to support for hydrogen, three statements from Fielding et al. (2008) were used. The internal consistency of the three statements was examined using Cronbach's alpha to see how closely the statements were related to each other, which gives an indication of the reliability of this set of statements (or "scale"). The alpha score was .929, which means that the internal consistency is acceptable. This means a composite score (being the average score over the three statements) can be calculated to represent each respondent's overall environmental identity. In this study, the closer a score is to 7, the stronger the respondent's environmental identity. Overall, the respondents indicated their environmental identity was slight-moderately aligned to the environmental statements provided (Table 20).

The relationship between environmental identity and support for hydrogen was examined. Spearman's rho correlations showed there is a weak relationship between environmental identity and the Time 1 measure of support for hydrogen ($r_s = .270$, p < .01), and although this relationship was stronger at the Time 2 measure of support ($r_s = .363$, p < .01), it is still considered to be weak.

These findings mirror those of the relationship between climate change beliefs and support for hydrogen. While the analyses did find a relationship between environmental identity and support for hydrogen, it is important to note that this relationship is not strong. Those who do *not* hold a strong sense of environmental identity are also supportive of hydrogen, but to a lesser degree than those who strongly identify as being environmentally friendly. This suggests that public support for hydrogen may be present across a broad range of groups in society, who differ in their opinions about environmental issues.

Please indicate how much you agree or disagree with the following statements	Mean ^a	SD
Being an environmentally friendly person is an important part of who I am	5.19	1.43
I am the type of person who is environmentally friendly	5.39	1.28
I see myself as an environmentally friendly person	5.39	1.30
Composite Environmental Identity Score (α = .929)	5.32	1.25
I see myself as an environmentally friendly person Composite Environmental Identity Score (α = .929)	5.39 5.32	1.

Table 20. Environmental identity

^a Measured on a 7-point rating scale, where 1 =strongly disagree, 7 =strongly agree); n = 3,020.
4.9. INNOVATOR CATEGORY

A set of statements were used to group respondents according to their affinity for new technology. These statements were refined versions of the statements used in the 2018 ARENA survey, which were adaptations from Noppers, Keizer, Bockarjova, and Steg (2015) work on consumers adoption of sustainable innovations (with a specific focus on innovative cars). Their work was underpinned by Rogers' theory of the Diffusion of Innovations (Rogers, 2003). Although Noppers et al. (2015) point out that the specificity of the innovation is an important consideration (because people's adoption of different innovations is likely to vary between products), in the national survey the term "new technology" was used to encompass people's response to any new technology more broadly. The largest group of respondents (47.4%) fell into middle category (Table 21), which can be described as the "Early majority" adopters (Noppers et al., 2015). Using the labels from the 2018 ARENA report, the other groups include "Innovators" (9.5%), "Early adopters" (25.3%), "Late majority" (11.4%), and "Traditionalists" (6.5%).

Table 21. Spread of respondents in each innovator category

When thinking of your response to new technology, which best describes you?	n	%
I closely follow new technology and am comfortable taking risks by being the first to purchase		
it.	286	9.5
I see potential advantages in new technology and like to be among the first to use it.	763	25.3
I am interested in new technology but prefer to wait for others to try it first.	1430	47.4
I am not thrilled by new technology but might purchase after it has been on the market for		
some time.	344	11.4
I have little affinity with new technology and do not like to buy it unless necessary.	197	6.5

Support for hydrogen was compared across the different adopter categories. For both the Time 1 and Time 2 measures, support was greatest for "Innovators", and decreased with each category thereafter (Figure 17). An ANOVA and Tukey's HSD post hoc comparisons tests (<u>Appendix 1 D</u>, Table 16-19) revealed that the differences between the means of the groups were significantly different, with the exception of the "Late majority" and "Traditionalists" in the Time 1 measure (Table 22).

Figure 17. Support for hydrogen by new technology adopter category at Time 1 and 2.

Table 22. Support for hydrogen by new technology adopter category at Time 1 and 2.

		Time	1	Time	2
Category	Statement	М	SD	М	SD
	I closely follow new technology and am comfortable taking risks				
Innovators	by being the first to purchase it.	6.15	1.07	6.39	0.93
Early	I see potential advantages in new technology and like to be				
adopters	among the first to use it.	5.72	1.15	6.09	1.02
	I am interested in new technology but prefer to wait for others to				
Early majority	try it first.	5.15	1.18	5.79	1.09
	I am not thrilled by new technology but might purchase after it				
Late majority	has been on the market for some time.	4.80	1.21	5.54	1.16
	I have little affinity with new technology and do not like to buy it				
Traditionalists	unless necessary.	4.62	1.40	5.10	1.56

4.10. ABILITY TO PAY ENERGY BILLS

4.10.1. Ability to pay electricity bills

All respondents answered a question about their ability to pay their electricity bill. The majority of respondents (59.0%) said that paying their electricity bill is never a problem, whereas 6.9% said they "always struggle" to pay their electricity bills (Table 23).

Table 23. Ability to pay electricity bills

Which best describes your situation in relation to your electricity bill?	n	%
Paying my electricity bill in full is never a problem for me	1781	59.0
I sometimes find it hard to pay my electricity bill when it becomes due	622	20.6
I always struggle to pay my electricity bill when it becomes due	209	6.9
I pre-pay my electricity bill	132	4.4
My electricity bill is usually in credit after factoring in solar feed-in tariffs	108	3.6
I do not pay for electricity in my house	168	5.6

To check whether a respondent's ability to pay their electricity bills influences their support for hydrogen, ANOVA and Tukey's HSD post hoc multiple comparisons tests (<u>Appendix 1 D</u>, Table 20 - 22) were conducted on the top three groups of respondents from Table 23. The three groups were defined as those for whom paying their electricity bills is: (1) never a problem, (2) sometimes a problem, and (3) always a struggle. For both measures of support (Time 1 and Time 2), there were statistically significant differences in the level of support between those who never experience a problem paying their bills and those who always struggle, and between those who sometimes find it hard to pay and those who always struggle (Figure 18). There were no differences between those who never have a problem and those who sometimes have a problem paying their electricity bills.

Figure 18 Comparisons between ability to pay electricity bills and support for hydrogen (T1 and T2)

4.10.2. Ability to pay gas bills

There were 1771 respondents (58.6% of the survey sample) who indicated they use gas and are connected to the mains supply (<u>Appendix 1 D</u>, Table 23 - 25). These respondents were asked about their ability to pay their gas bills. Almost two thirds (64.3%) indicated they never have a problem paying their gas bills in full (Table 24).

Table 24. Ability to pay gas bills

Which best describes your situation in relation to your gas bill?	n	%
Paying my gas bill in full is never a problem for me	1137	64.3
I sometimes find it hard to pay my gas bill when it becomes due	339	19.2
I always struggle to pay my gas bill when it becomes due	97	5.5
l pre-pay my gas bill	79	4.5
I do not pay for gas in my house	117	6.6

An ANOVA and Tukey's HSD post hoc multiple comparisons tests were conducted to check whether respondent's ability to pay their gas bills influences their support for hydrogen (Appendix 1 D, Table 23-25). The results of these analyses showed there was only a significant difference (at both time measures of support) between respondents who never have a problem paying their bills, and those who always struggle. However, the difference in the level of support is very small (Figure 19), and all groups were supportive overall.

Figure 19 Comparisons between ability to pay gas bills and support for hydrogen (T1 and T2)

4.11. TRUST IN ORGANISATIONS

Trust in organisations to minimise the impact on the environment and act in the best interest of consumers are important requirements for ensuring a Social Licence to Operate (Moffat and Zhang, 2014). There is also research that has demonstrated that organisational integrity and competence will lead to greater trust and ultimately greater support (Terwel et al. 2009). To better understand the public's perceptions of different institutions involved in the hydrogen industry, respondents were asked the extent to which they thought particular organisations and groups would act in the best interests of consumers if a hydrogen economy was developed in Australia. As with previous surveys, CSIRO was the most trusted followed by universities and environmental non-government organisations. State, federal and local governments were the next most trusted and closely aligned. The associated industries and media were less trusted although all were above the mid-point so still positively viewed.

If a hydrogen economy was to be developed in Australia, to what extent do you agree or disagree that the following groups would act in the best interest of the consumer?	Mean ^a	SD
CSIRO	5.43	1.33
Universities	5.24	1.32
Environmental Non-Government Organisations (ENGOs)	5.18	1.42
State government	4.94	1.51
Federal government	4.89	1.64
Local government	4.84	1.47
Car/appliance manufacturers	4.50	1.50
Electricity generation companies	4.35	1.65
Media	4.33	1.54
Fuel/gas supply companies	4.08	1.76

^a Measured on a 7-point rating scale, where 1 = strongly disagree, 4 = neither agree nor disagree, 7 = strongly agree); n = 3,020.

5. Conclusions

Reflecting on the results of this national survey there are several conclusions that can be drawn.

Compared to the 2018 ARENA survey, the results of respondents' rating of their subjective knowledge suggests that while only a small percentage of the population are confident about their knowledge of hydrogen there is a growing awareness of hydrogen. It is also apparent that general knowledge of hydrogen as an alternative energy source for the home is increasing. Although awareness of specific projects and policies is still relatively low, in both surveys hydrogen vehicles were the one respondents were most familiar with.

We have also seen a small but significant increase in general support for hydrogen since 2018 and this is not impacted by major political party preferences. This result is promising for Australians as it suggests there will continue to be a bi-partisan approach towards realising the benefits of a hydrogen industry which supports our findings that on the whole it appears that hydrogen is widely thought to be a useful, beneficial and worthwhile technology. However, there is some variation in the way people feel about hydrogen as reflected in the greater standard deviation scores in response to the attitudinal questions.

Given that the greatest changes in opinion occurred between Time 1 and Time 2 and not between Time 2 and Time 3 it suggests that people will form their opinions based on their understanding and knowledge of the technology more so than on a simple message frame. The factual information provided through the animated video and images and texts has some effect on general support for hydrogen. It does suggest that providing some factual information as the industry develops might be helpful in garnering support. However, whether this is enough to have a long lasting effect remains to be seen at the same time in all of the responses to date projects and the use of hydrogen remains relatively hypothetical. As this changes it will be important to ensure there is adequate engagement with the range of publics to provide them with relevant information and answer any questions they may have.

Examining in more detail the effects of the information provided on support there were some differences. If respondents were supportive to begin with, they tended to become more supportive. However, for those who were neither supportive nor unsupportive, they formed an opinion and tended toward being more supportive. Whereas those who were unsupportive, their views did not tend to change much.

There was an increase in acceptance of all forms of hydrogen production from 2018, including with CCS, although this was least preferred. Respondents clearly indicated a preference for hydrogen produced from renewable energy and electrolysis. However, these responses do not take into account any reflection on the scale required for ensuring a successful export industry. This includes considerations of competing land and water use, and changes in lifestyles that may be bought about from hosting large scale renewable energy projects. Similarly, while people were accepting of hydrogen for export use, they were more likely to agree to a production facility near them for domestic use rather than for export.

The results demonstrate that respondents are rather in agreement with hydrogen as a potential future energy source for generating Australia's future energy needs. When compared with other energy technologies, "the new renewable" fall third behind solar PV and wind in the technologies provided. When considering developing an export market there are multiple factors that need to be considered in equal amounts. Safety is key, but there is also a need to ensure economic benefits for Australia including jobs while ensuring environmental impacts are minimised.

When it comes to local householder preferences gas appears to be the preferred cooking fuel and it can be speculated that as a result, hydrogen blends would also seem acceptable. However, when comparing support for hydrogen between gas users and non-gas users, the effects were quite small which suggests that Australians are not completely committed to a gas future. It is likely safety, costs and overall affordability of choices will influence this final outcome.

6. Implications and Recommendations for industry

- 1. Safety is the number one priority for Australians to ensure the development of a successful hydrogen industry and will require adequate regulations are in place provide confidence.
- 2. Australians are positive toward the economic opportunities it might bring such as jobs and benefits for regional communities.
- 3. Provision of factual information during the survey, did help to strengthen support for those who had previously expressed no opinion, however it did not influence those who were strongly opposed.
- 4. Green hydrogen continues to be the preferred generation source compared with any using CCS.
- 5. Overall there is multi-partisan support for hydrogen which is helpful when considering the industry's development.
- 6. While gas users expressed a stronger support for continued use of gas and transition to hydrogen, the difference was minimal. This will be an important issue to monitor as the continued discussion between all electric and gas transpires.

7. Next steps and future works

- 1. Produce academic articles with more in-depth analysis of the survey results to identifying influencing factors and correlations.
- Make comparisons of the national sample with the results of the deliberative processes to compare differences in attitudes when provided with a more comprehensive information set and the opportunity to deliberate with peers on the information provided.
- 3. Undertake a literature review on biomethane and other renewable gases and implement a smaller national survey to understand how individuals respond to the concept of biogases.

8. References

- Advisian, (2021). PROJECT 411001-00078 Australian hydrogen market study Sector analysis summary. Prepared for CEFC, Brisbane.
- Ashworth, P. & Lambert, V. (2019). Cautiously optimistic: understanding the Australian public's response to the Hydrogen opportunity. *International Conference on Hydrogen Safety*. Adelaide, SA.
- Ashworth, P., Sun, Y., Ferguson, M., Witt, K. & She, S. (2019). Comparing how the public perceive CCS across Australia and China, *Int. J. Greenhouse Gas Control* 86, 125–133.
- Bradbury, J., Ray, I., Peterson T., Wade, S., Wong-Parodi, G. & Feldpausch, A. (2009) The Role of Social Factors in Shaping Public Perceptions of CCS: Results of Multi-State Focus Group Interviews in the U.S. *Energy Procedia* 1. 4665 – 4672.
- Chong, D., & Druckman, J.N. (2007). Framing theory, Annual Review of Political Science. 10 (1) 103–126,
- Chyung, S. Y., Roberts, K., Swanson, I., & Hankinson, A. (2017). Evidence-Based Survey Design: The Use of a Midpoint on the Likert Scale. *Performance Improvement, 56* (10), 15-23.
- Commonwealth of Australia. (2019). *Australia's National Hydrogen Strategy*. Retrieved from https://www.industry.gov.au/sites/default/files/2019-11/australias-national-hydrogen-strategy.pdf
- Commonwealth of Australia (2020). Royal Commission into National Natural Disaster Arrangements Interim Report. <u>Available at https://naturaldisaster.royalcommission.gov.au/publications/interim-observations-31august-2020</u>
- Connor, M. & Siegrist, M., (2015). The stability of risk and benefit perceptions: a longitudinal study assessing the perception of biotechnology. *Journal of Risk Research.* 19(4):1-15
- De Groot, J.I.M., Steg, L., & Poortinga, W., (2013). Values, perceived risks and benefits, and acceptability of nuclear energy. *Risk Analysis*, 33,307–317.
- Dowd, A-M., Boughen, N., Ashworth, P., & Carr-Cornish, S. (2011). Geothermal technology in Australia: investigating social acceptance. *Energy Policy.* 39 (10) 6301-6307.
- Dunlap, R. E., Van Liere, K. D., Mertig, A. G., & Jones, R. E. (2000). New Trends in Measuring Environmental Attitudes: Measuring Endorsement of the New Ecological Paradigm: A Revised NEP Scale. *Journal of Social Issues*, 56(3), 425-442.
- Fleishman,L.A., Bruine de Bruin, W. & Morgan, M.G. (2010). Informed public preferences for electricity portfolios with CCS and other low-carbon technologies, *Risk Analysis.* 30 (9) 1399–1410.
- Fielding, K. S., McDonald, R., & Louis, W. R. (2008). Theory of planned behaviour, identity and intentions to engage in environmental activism. *Journal of Environmental Psychology*, 28(4), 318-326.
- Fielding, K. S., Russell, S., Spinks, A., & Mankad, A. (2012). Determinants of household water conservation: The role of demographic, infrastructure, behavior, and psychosocial variables. *Water Resources Research*, 48(10).
- Fielding, K.S., Head, B.W., Laffan, W., Western, M. & Hoegh-Guldberg, O. (2012) Australian politicians' beliefs about climate change: political partisanship and political ideology, *Environmental Politics*, 21:5, 712-733, DOI: 10.1080/09644016.2012.698887
- Fishbein, M., & Ajzen, I. (2010). *Predicting and Changing Behavior: The Reasoned Action Approach*. New York: Taylor & Francis Group.
- Gardner, J., Parsons, R., & Paxton, G. (2010). Adaptation benchmarking survey: initial report. *CSIRO Climate Adaptation Flagship Working Paper No. 4*. Retrieved from <u>http://www.csiro.au/resources/CAF-workingpapers.html</u>
- Gupta, N., Fisher, A.R.H. & Frewer L.J.. (2012). Socio-psychological determinants of public acceptance of technologies: a review. *Public Understanding of Science*, 21(7): 782-795.
- Hall, N., Ashworth, P., & Devine-Wright, P. (2013). Societal acceptance of wind farms: Analysis of four common themes across Australian case studies. *Energy Policy*, 58, 200 208.
- Hobman, E. V., & Ashworth, P. (2013). Public support for energy sources and related technologies: The impact of simple information provision. *Energy Policy*, *63*, 862-869.
- Huijts, N. M. A., Molin, E. J. E., & Steg, L. (2012). Psychological factors influencing sustainable energy technology acceptance: A review-based comprehensive framework. *Renewable and Sustainable Energy Reviews*, 16(1), 525-531.
- Jeanneret, T., Muriuki, G., & Ashworth, P. (2014). *Energy technology preferences of the Australian public*. Retrieved from CSIRO:Australia.
- Koyama, K. (2021). The role of hydrogen in Japan's energy transition towards 2050 carbon neutrality. *The Oxford Institute for Energy Studies.* May, Issue 127.

- Lambert, V., & Ashworth, P. (2018). *The Australian Public's Perceptions of Hydrogen for Energy*. Retrieved from Brisbane, Queensland:
- Moffat, K., & Zhang,A. (2014). The paths to social licence to operate: an integrative model explaining community acceptance of mining. *Resources Policy* 39,61–70.
- Nadler, J. T., Weston, R., & Voyles, E. C. (2015). Stuck in the Middle: The Use and Interpretation of Mid-Points in Items on Questionnaires. *The Journal of General Psychology*, *14*2(2), 71-89.
- Noppers, E. H., Keizer, K., Bockarjova, M., & Steg, L. (2015). The adoption of sustainable innovations: The role of instrumental, environmental, and symbolic attributes for earlier and later adopters. *Journal of Environmental Psychology*, *44*, 74-84.
- Pidgeon, N.F., Lorenzoni, I., & Poortinga, W. (2008). Climate change or nuclear power no thanks! A quantitative study of public perceptions and risk framing in Britain, *Global Environmental Change* 18 (1) 69–85.
- Pisarski, A. & Ashworth, P. (2013). The Citizen's Round Table process: canvassing public opinion on energy technologies to mitigate climate change. *Climatick Change*, 119 (2), 533–546,
- Rogers, E. M. (2003). Diffusion of innovations (5th ed.). New York: Free Press.
- Scott, M. & Powells, G. (2019). Blended Hydrogen: The UK Public's Perspective. Newcastle upon Tyne, UK: Newcastle University.

Slovic, P. (1993). Perceived Risk, Trust, and Democracy. Risk Analysis, 13(6), 675-682.

- Terwel, B.W., Harinck, F., Ellemers, N., & Daamen, DDL (2009). Competence-based and integrity-based trust as predictors of acceptance of carbon dioxide capture and storage (CCS). Risk Analysis, 29, 1129-1140.
- United Nations Environment Programme (2020). *Emissions Gap Report 2020*. Nairobi. Retrieved from <u>https://www.unep.org/emissions-gap-report-2020</u>
- Union of Concerned Scientists. (2020). Each Country's Share of Global Emissions. Retrieved from https://www.ucsusa.org/resources/each-countrys-share-co2-emissions
- Visschers, V., Keller, C., & Siegrist, M. Z (2011). Climate change benefits and energy supply benefits as determinants of acceptance of nuclear power stations: investigating an explanatory model, *Energy Policy* 39 (6) 3621–3629.
- Whitmarsh, L., Xenias, D., & Jones, C.R. (2019) Framing effects on public support for carbon capture and storage, Palgrave Communications 5 (17).
- Wolsink, M., (2007). Wind power implementation: the nature of public attitudes: equity and fairness instead of 'backyard motives. *Renewable and Sustainable Energy Reviews* (11), 1188–1207.
- Wustenhagen, R., Wolsink, M., & Burer, M. (2007). Social acceptance of renewable energy innovation: an introduction to the concept. *Energy Policy* 35, 2683–2691.
- Zhang, A., & Moffat, K. (2015). A balancing act: The role of benefits, impacts and confidence in governance in predicting acceptance of mining in Australia. *Resources Policy*, *44*, 25-34.

Appendix 1. Additional information and analyses

A. RESPONDENT CHARACTERISTICS (SAMPLE DESCRIPTION)

Table 25 Demographic characteristics of respondents

Characteristic	Frequen	су	Per (cent
State	(1)			/0)
NSW		947		31.4
VIC		755		25.0
QLD		594		19.7
SA		254		8.4
WA		310		10.3
TAS		71		2.4
NT		32		1.1
ACT		57		1.9
Area type				
Metropolitan		2204		73.0
Regional		776		25.7
Gender				
Male		1463		48.4
Female		1543		51.1
Transgender Female		6		.2
Transgender Male		4		.1
Gender Variant/Non-Conforming		4		.1
Country of birth ^a				
Australia		2235		74.0
England		170		5.6
India		74		2.5
China (excluding Hong Kong and Taiwan)		29		1.0
Malaysia		26		.9
Hong Kong		26		.9
Other (countries < .6%)		460		15.1
Aboriginal or Torres Strait Islander status				
No		2914		96.5
Yes, Aboriginal		96		3.2
Yes, Torres Strait Islander		10		.3
Age Group				
18 – 34 years		899		29.8
35 – 54 years		1026		34.0
55+ years		1095		36.3
	Min	Max	Mean	SD
Age (years)	18	91	47.8	17.4

^aIn the Australian population, 66.7% were born in Australia. Source: Australian Bureau of Statistics (2020) SEW data, available on www.abs.gov.au.

45

Table 26 Education and employment

Characteristic	n	%
Education completed ^a		
Year 10 or below	289	9.6
Year 11 or equivalent	79	2.6
Year 12 or equivalent	436	14.4
Trade certificate or Apprenticeship	147	4 9
Certificate Lor II	78	2.6
Certificate III or IV	348	11.5
Advanced Diploma / Diploma	387	12.8
Bachelor or Honours degree	833	27.6
Postgraduate degree (e.g. Masters, PhD)	406	13.4
Other	17	.6
Occupational status		
Student	162	5.4
Household duties	195	6.5
Employed Part-time	543	18.0
Employed Full-time	1128	37.4
Unemployed not looking for work	39	1.3
Unemployed looking for work	156	5.2
Retired	550	18.2
Pensioner	142	4.7
Not able to work	49	1.6
Other	56	1.9
Occupational sector (current or prior)		
Health care and social assistance	280	9.3
Retail trade	267	8.8
Education and training	238	7.9
Professional, scientific, technical services	226	7.5
Administrative and support workers	196	6.5
Financial and Insurance services	151	5
Information, media and telecommunications	149	4.9
Manufacturing	126	4.2
Construction	125	4.1
Transport, portal and warehousing	116	3.8
Public administration and safety	105	3.5
Accommodation and food services	85	2.8
Arts and recreation services	53	1.8
Wholesale trade	48	1.6
Agriculture, forestry, fishing	45	1.5
Mining	42	1.4
Electricity, gas, water, waste services	35	1.2
Rental, hiring and real estate services	32	1.1
Other services	312	10.3
Not applicable	389	12.9

^aPersons aged 15-74 years. Australian Bureau of Statistics: Education and Work, Australia, May 2020. In the Australian population, 19.0% have Bachelor's degrees, and a further 7.7% have postgraduate degrees.

Table 27 Household characteristics

Characteristic	n	%
Home ownership status		
Owned outright	1036	34.3
Owned with a mortgage	930	30.8
Being rented	900	29.8
Being occupied rent free	50	1.7
Being purchased under a rent/buy scheme	39	1.3
Being occupied under a life tenure scheme	13	.4
Other	52	1.7
Dwelling type		
Separate house	1863	61.7
Semi-detached, row or terrace house, townhouse etc.	302	10.0
with: One storey		
Semi-detached, row or terrace house, townhouse etc.	224	7.4
with: Two or more storeys		
Flat or apartment: In a one or two storey block	217	7.2
Flat or apartment: In a three storey block	119	3.9
Flat or apartment: In a four or more storey block	193	6.4
Flat or apartment: Attached to a house	39	1.3
Caravan	16	.5
Cabin, houseboat	11	.4
Improvised home, tent, sleepers out	12	.4
House or flat attached to a shop, office, etc.	24	.8
Household composition		
Couple with child/children	941	31.2
Couple with no children	856	28.3
Single person household	593	19.6
Group household	282	9.3
One parent with child/children	187	6.2
Other family (e.g. extended family household)	161	5.3
Household income		
Less than \$30,000	473	15.7
\$30,000 - \$59,999	707	23.4
\$60,000 - \$89,999	518	17.2
\$90,000 - \$119,999	418	13.8
\$120,000 - \$149,999	369	12.2
\$150,000 - \$179,000	181	6.0
\$180,000 - \$199,999	115	3.8
\$200,000 - \$219,999	52	1.7
\$220,000 - \$239,999	27	.9
\$240,000 - \$269,999	27	.9
\$270,000 - \$299,999	31	1.0
More than \$300,000	33	1.1
Other	69	2.3

B. HOUSEHOLD ENERGY CHARACTERISTICS

Table 28. Respondents who subscribe to green power

	п	%
Subscribes to Green Power		
Yes	571	18.9
No	1783	59.0
Do not know	666	22.1
Percent of Green Power subscription		
1-25%	82	31.1
26-50%	76	28.8
51-75%	38	14.4
76-100%	68	25.8
Subtotal	264	100
Do not know Green Power percentage	307	

Table 29 Domestic energy sources

	Yes		No	
Energy source & use	n	%	n	%
Electricity (grid connected)	2868	95.0	152	5.0
Gas (mains)	1771	58.6	1249	41.4
Solar PV (rooftop)	966	32.0	2054	68.0
Gas (bottled)	712	23.6	2308	76.4
Solar hot water	587	19.4	2433	80.6
Battery storage unit	263	8.7	2757	91.3
Battery electric vehicle	200	6.6	2820	93.4
Others	105	3.5	2915	96.5

Table 30 Reason for not having gas connection

Main reason you do not have a mains gas connection	n	%
There is no reticulated/mains gas network in my neighbourhood/ building.	518	41.5
My home has been designed to run on all-electric fixed appliances.	487	39.1
It was too expensive to connect to the reticulated/mains gas network in my neighbourhood.	68	5.5
Renting/not the building owner	45	3.6
I disconnected from the gas network because I switched my fixed appliances to all-electric.	33	2.6
Technical difficulties prevented the connection to the reticulated/mains gas network in my		
neighbourhood.	28	2.2
I asked to be disconnected from the reticulated gas network because I could not pay the bills.	17	1.4
Do not like gas/concerned about safety etc.	12	1.0
My retailer disconnected me because I could not pay the bills.	11	0.9
Use bottled gas	6	0.5
Other reason (please specify):	22	1.8
Total	1247	100

Table 31 Domestic energy uses and preferences

	Currently use		Prefer t	o use
Domestic use and energy source	n	% a	n	% a
Hot water				
Electricity (mains)	2120	70.2	832	27.5
Gas	1664	55.1	923	30.6
Solar hot water system	600	19.9	1417	46.9
Diesel	134	4.4	174	5.8
Wood	198	6.6	218	7.2
Other	42	1.4	51	1.7
Not applicable	43	1.4	453	15.0
Stovetop cooking				
Electricity (mains)	1635	54.1	967	32.0
Gas	1681	55.7	1585	52.5
Diesel	114	3.8	126	4.2
Wood	100	3.3	156	5.2
Other	16	0.5	66	2.2
Not applicable	40	1.3	453	15.0
Space heating				
Electricity (mains)	1908	63.2	990	32.8
Gas	908	30.1	726	24.0
Passive solar design (thermal mass)	182	6.0	644	21.3
Diesel	81	2.7	114	3.8
Wood	269	8.9	331	11.0
Other (open text)	36	1.2	61	2.0
Not applicable	391	12.9	697	23.1

^aPercent of total sample (N = 3,020)

Figure 21 Stovetop cooking use and preferences

Figure 22 Space heating use and preferences

Table 32 Awareness of hydrogen production projects in Australia

I have heard about a hydrogen production project in Australia	NSW	VIC	QLD	SA	WA	TAS	NT	АСТ
Yes								
Count	281	190	137	75	78	29	11	16
Expected Count	256.2	204.3	160.7	68.7	83.9	19.2	8.7	15.4
Residual	24.8	-14.2	-23.7	6.3	-5.9	9.8	2.3	0.6
No								
Count	541	458	380	141	201	36	18	33
Expected Count	566.9	452	355.6	152.1	185.6	42.5	19.2	34.1
Residual	-25.9	6	24.4	-11.1	15.4	-6.5	-1.2	-1.1
Unsure								
Count	125	107	77	38	31	6	3	8
Expected Count	123.9	98.8	77.7	33.2	40.5	9.3	4.2	7.5
Residual	1.1	8.3	-0.7	4.8	-9.5	-3.3	-1.2	0.5

C. CONVERSION OF 2018 ARENA DATA

The 2021 National Survey contained many of the same questions used in the 2018 ARENA survey, with one minor change. The rating scale on the 2021 survey was increased to 7 point (from 5 points), to facilitate more variability in the data (since many of the responses to these variables clustered around the midpoint in the 2018 data). To convert the responses from the ARENA dataset to a 7 point scale, the following formula was used:

Y = (B - A) * (x - a) / (b - a) + A

where Y = the adjusted new score, x = the initial score to be adjusted, A = new minimum, B = new maximum, a = current minimum, b = current maximum. This gives us:

Y = (7 - 1) * (x - 1) / (5 - 1) + 1

which is equivalent to:

Y = 1.5 * x - 0.5.

Reference: https://www.ibm.com/support/pages/node/422073

Once calculated, the ARENA variables in the cleaned dataset (N = 2,785) were matched with the relevant FFCRC 2021 variables, then checked for coding direction (reversing it if necessary), then two data sets were merged to enable comparisons between the two surveys.

D. ADDITIONAL ANALYSES

Table 33 Support for hydrogen by political party preference

If there would be a federal election on next Sunday, which party would you vote for	T1 Support for hydrogen		T2 Support for hydrogen		T3 Support for hydrogen	
	Mean	Standard	Mean	Standard	Mean	Standard
		Deviation		Deviation		Deviation
Liberal/National	5.40	1.22	5.88	1.12	6.00	1.06
Labor	5.39	1.23	5.93	1.06	6.02	1.03
Greens	5.32	1.24	5.94	1.14	5.93	1.28
Other	4.88	1.35	5.48	1.35	5.62	1.33

Table 34 Open-ended responses to midpoint selection (neither supportive nor unsupportive) for hydrogen support.

	Time 2	Time 3 ^a
Time 1 (Survey start)	(Before message)	(After message)
Unsupportive if used in conjunction with 'natural' gas and fracking. Otherwise, no opinion.	zero point energy	I'm concerned on water supply if this how Australian gov will provide clean water
If hydrogen came from the use of renewables, then fine otherwise no.	this survey has put me off hydrogen by being so skewed	I'm concerned about safety
I have heard that it still add to climate change. Hi	If we do this will we run short of water.	It's probably like that E10 crap and your car wouldn't pull the skin off a rice pudding
Have people forgotten the Hindenburg already?	I am concerned most about safety. Knowing it is highly flammable makes me hesitant to use at all.	already answered plus i do not trust this government to take climate friendly decisions
Don't understand environmental impact	have concerns over safety issues	No real consensus that reducing carbon will make a serious change in reducing or eliminating whatever climate change phenomenon is the focus of the media from day-to-day.
Because hydrogen is normally produced from the reaction of methane with steam - methane is a fossil fuel, and this production also produces CO and CO2	I don't know in comparison to other forms of energy creation	I don't trust the government on energy approaches - I would like to hear a range of views on this solution
		I don't know enough nor how credible the quote is and who made it.
		Don't know enough about hydrogen 'production' AND it poses a threat to community unification.
		Because the current government isn't serious about climate change (see Kelly, Christensen etc) so I have trouble believing anything they say about this very important issue. They have to convince the Nats not to build coal fired power stations first.
		I would have to see it trialled first
		I don't trust the government to ensure ONLY GREEN hydrogen is produced
		I would rather not mix and the store emissions

53

						95% Cor Interval f	nfidence for Mean		
Knowledge scor	'e (x/5)	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
T1 Support for	0	582	4.6856	1.05401	.04369	4.5998	4.7714	1.00	7.00
hydrogen	1	548	5.1423	1.17321	.05012	5.0439	5.2408	1.00	7.00
	2	749	5.4820	1.22856	.04489	5.3938	5.5701	1.00	7.00
	3	592	5.6081	1.18299	.04862	5.5126	5.7036	1.00	7.00
	4	375	5.5947	1.32881	.06862	5.4597	5.7296	1.00	7.00
	5	174	5.6322	1.46335	.11094	5.4132	5.8511	1.00	7.00
	Total	3020	5.3142	1.25444	.02283	5.2695	5.3590	1.00	7.00
T2 Support for	0	582	5.6306	1.08627	.04503	5.5421	5.7190	1.00	7.00
hydrogen	1	548	5.7099	1.08914	.04653	5.6185	5.8012	1.00	7.00
	2	749	6.0027	1.03933	.03798	5.9281	6.0772	1.00	7.00
	3	592	5.9899	1.09602	.04505	5.9014	6.0783	1.00	7.00
	4	375	5.8667	1.33578	.06898	5.7310	6.0023	1.00	7.00
	5	174	5.8736	1.46089	.11075	5.6550	6.0922	1.00	7.00
	Total	3020	5.8510	1.14485	.02083	5.8101	5.8918	1.00	7.00

Table 35 Objective knowledge scores and support for hydrogen – Descriptives

Dependent Variable - T1 Support for hydrogen										
(I) Knowledge score (5	(J) Knowledge score (5 questions)	Mean Difference (I-	Std. Error	Sig.	95% Cor Inte	nfidence rval				
questions)		J)			Lower	Upper				
					Bound	Bound				
0	1	45677 [*]	.07180	.000	6677	2459				
	2	79641 [*]	.06665	.000	9922	6006				
	3	92254 [*]	.07041	.000	-1.1294	7157				
	4	90910 [*]	.07987	.000	-1.1437	6745				
	5	94662 [*]	.10422	.000	-1.2528	6405				
1	0	.45677*	.07180	.000	.2459	.6677				
	2	33964*	.06781	.000	5388	1405				
	3	46577 [*]	.07150	.000	6758	2557				
	4	45233 [*]	.08084	.000	6898	2149				
	5	48985 [*]	.10496	.000	7982	1815				
2	0	.79641*	.06665	.000	.6006	.9922				
	1	.33964*	.06781	.000	.1405	.5388				
	3	12613	.06633	.860	3210	.0687				
	4	11269	.07631	1.000	3368	.1115				
	5	15021	.10151	1.000	4484	.1480				
3	0	.92254*	.07041	.000	.7157	1.1294				
	1	.46577*	.07150	.000	.2557	.6758				
	2	.12613	.06633	.860	0687	.3210				
	4	.01344	.07961	1.000	2204	.2473				
	5	02408	.10402	1.000	3296	.2815				
4	0	.90910 [*]	.07987	.000	.6745	1.1437				
	1	.45233 [*]	.08084	.000	.2149	.6898				
	2	.11269	.07631	1.000	1115	.3368				
	3	01344	.07961	1.000	2473	.2204				
	5	03752	.11064	1.000	3625	.2875				
5	0	.94662*	.10422	.000	.6405	1.2528				
	1	.48985*	.10496	.000	.1815	.7982				
	2	.15021	.10151	1.000	1480	.4484				
	3	.02408	.10402	1.000	2815	.3296				
	4	.03752	.11064	1.000	2875	.3625				
*. The mean different	ce is significant at the 0.	05 level.								

Table 36. Objective knowledge scores and support for hydrogen – Multiple comparisons (Bonferoni) (DV T1)

	Dependent Varia	able – T2 Supj	port for h	ydroger	า	
(I) Knowledge score (5	vledge (J) Knowledge Mean Std. S e (5 score (5 questions) Difference (I- Error		Sig.	95% Cor Inte	nfidence rval	
questions)		J)			Lower	Upper
					Bound	Bound
0	1	07927	.06761	1.000	2779	.1193
	2	37209 [*]	.06277	.000	5565	1877
	3	35928 [*]	.06631	.000	5541	1645
	4	23608*	.07522	.026	4570	0151
	5	24298	.09814	.200	5313	.0453
1	0	.07927	.06761	1.000	1193	.2779
	2	29282*	.06385	.000	4804	1052
	3	28001 [*]	.06734	.000	4778	0822
	4	15681	.07613	.592	3804	.0668
	5	16371	.09884	1.000	4541	.1266
2	0	.37209*	.06277	.000	.1877	.5565
	1	.29282*	.06385	.000	.1052	.4804
	3	.01281	.06247	1.000	1707	.1963
	4	.13600	.07186	.877	0751	.3471
	5	.12911	.09559	1.000	1517	.4099
3	0	.35928*	.06631	.000	.1645	.5541
	1	.28001*	.06734	.000	.0822	.4778
	2	01281	.06247	1.000	1963	.1707
	4	.12320	.07497	1.000	0970	.3434
	5	.11630	.09795	1.000	1714	.4040
4	0	.23608*	.07522	.026	.0151	.4570
	1	.15681	.07613	.592	0668	.3804
	2	13600	.07186	.877	3471	.0751
	3	12320	.07497	1.000	3434	.0970
	5	00690	.10419	1.000	3130	.2992
5	0	.24298	.09814	.200	0453	.5313
	1	.16371	.09884	1.000	1266	.4541
	2	12911	.09559	1.000	4099	.1517
	3	11630	.09795	1.000	4040	.1714
	4	.00690	.10419	1.000	2992	.3130
*. The mean differen	ce is significant at the 0.	05 level.				

Table 13. Objective knowledge scores and support for hydrogen – Multiple comparisons (Bonferoni) (DV T2)

Table 37 Comparison of support for hydrogen between gas (mains) users and non-users – Independent Samples Test

		Levene' for Equa Varia	's Test ality of nces	st of t-test for Equality of Means						
						Sig. (2-	Mean	Std. Error	95% Conf Interval of Difference	idence the
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
T1 Support for hydrogen	Equal variances assumed	.560	.454	2.582	3018	.010	.11960	.04632	.02877	.21044
	Equal variances not assumed			2.573	2645.953	.010	.11960	.04649	.02845	.21076
T2 Support for hydrogen	Equal variances assumed	6.819	.009	2.434	3018	.015	.10293	.04228	.02003	.18584
	Equal variances not assumed			2.406	2563.318	.016	.10293	.04279	.01903	.18683

Table 38 Support for hydrogen and climate change beliefs – Group statistics

	Do you believe climate change is happening now or will happen in the next 30 years?	N	Mean	Std. Deviation	Std. Error Mean
T1 Support for	all other responses	736	5.0924	1.29768	.04783
hydrogen	Yes, it is already happening.	2284	5.3857	1.23200	.02578
T2 Support for	all other responses	736	5.4226	1.27540	.04701
hydrogen	Yes, it is already happening.	2284	5.9891	1.06362	.02226
T3 Support for	all other responses	571	5.5447	1.28392	.05373
hydrogen	Yes, it is already happening.	1846	6.0677	1.04338	.02428

		Levene's for Equa Varian	s Test lity of ces	t t-test for Equality of Means						
						Sig. (2-	Mean	Std. Error	95% Co Interv Diffe	onfidence al of the erence
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
T1 Support	Equal variances	.487	.485	-5.544	3018	.000	29334	.05291	39708	18959
for	assumed									
hydrogen	Equal			-5.398	1191.5	.000	29334	.05434	39994	18673
	variances				98					
	not									
	assumed									
T2	Equal	64.637	.000	-11.945	3018	.000	56650	.04742	65949	47351
Support	variances									
for	assumed									
hydrogen	Equal			-10.891	1083.8	.000	56650	.05201	66856	46444
	variances				32					
	not									
	assumed									
тз	Equal	51.009	.000	-9.886	2415	.000	52306	.05291	62681	41931
Support	variances									
for	assumed									
hydrogen -	Equal			-8.871	816.13	.000	52306	.05896	63879	40732
Recoded	variances				7					
	not									
	assumed									

Table 39 Support for hydrogen and climate change beliefs – Independent Samples Test

						95% Co Interval Mean	nfidence for		
				Std.	Std.	Lower	Upper		
		Ν	Mean	Deviation	Error	Bound	Bound	Minimum	Maximum
T1 Support for hydrogen - Survey start	I closely follow new technology and am comfortable taking risks by being the first to purchase it.	286	6.1538	1.07480	.06355	6.0288	6.2789	1.00	7.00
	I see potential advantages in new technology and like to be among the first to use it.	763	5.7156	1.15088	.04166	5.6338	5.7974	1.00	7.00
	I am interested in new technology but prefer to wait for others to try it first.	1430	5.1503	1.17671	.03112	5.0893	5.2114	1.00	7.00
	I am not thrilled by new technology but might purchase after it has been on the market for some time.	344	4.8023	1.20804	.06513	4.6742	4.9304	1.00	7.00
	I have little affinity with new technology and do not like to buy it unless necessary.	197	4.6244	1.40372	.10001	4.4271	4.8216	1.00	7.00
	Total	3020	5.3142	1.25444	.02283	5.2695	5.3590	1.00	7.00
T2 Support for hydrogen - Before comms message	I closely follow new technology and am comfortable taking risks by being the first to purchase it.	286	6.3916	.92554	.05473	6.2839	6.4993	1.00	7.00
	I see potential advantages in new technology and like to be among the first to use it.	763	6.0944	1.01769	.03684	6.0220	6.1667	1.00	7.00
	I am interested in new technology but prefer to wait for others to try it first.	1430	5.7909	1.09343	.02891	5.7342	5.8476	1.00	7.00
	I am not thrilled by new technology but might purchase after it has been on the market for some time.	344	5.5407	1.15734	.06240	5.4180	5.6634	1.00	7.00
	I have little affinity with new technology and do not like to buy it unless necessary.	197	5.1015	1.56161	.11126	4.8821	5.3209	1.00	7.00
	llotal	3020	5.8510	1.14485	.02083	5.8101	5.8918	1.00	7.00

Table 40 Support for hydrogen by innovator category – Descriptives

Table 41 Support for hydrogen by innovator category – ANOVA

		Sum of	df	Mean Square	F	Sia
T1 Support for hydrogen - Survey start	Between Groups	546.837	4	136.709	98.045	.000
	Within Groups	4203.951	3015	1.394		
	Total	4750.788	3019			
T2 Support for hydrogen - Before	Between Groups	277.720	4	69.430	56.895	.000
comms message	Within Groups	3679.227	3015	1.220		
	Total	3956.947	3019			

Table 42 Support for hydrogen by innovator category Time 1– multiple comparisons (Tukey HSD)

Dependent Variable – T1 Support for hydrogen – Survey start										
(I) When thinking of your	(J) When thinking of your	Mean			95% Confidence Interval					
response to new technology,	response to new technology,	Difference (I-	Std.		Lower	Upper				
which best describes you?	which best describes you?	J)	Error	Sig.	Bound	Bound				
I closely follow new technology	I see potential advantages in new	.43825*	.08187	.000	.2148	.6617				
and am comfortable taking risks	technology and like to be among									
by being the first to purchase it.	the first to use it.									
	I am interested in new technology	1.00350*	.07649	.000	.7947	1.2123				
	but prefer to wait for others to try it									
	first.									
	I am not thrilled by new	1.35152*	.09449	.000	1.0936	1.6094				
	technology but might purchase									
	after it has been on the market for									
	some time.									
	I have little affinity with new	1.52948*	.10933	.000	1.2311	1.8279				
	technology and do not like to buy									
	it unless necessary.									
I see potential advantages in new	I closely follow new technology	43825*	.08187	.000	6617	2148				
technology and like to be among	and am comfortable taking risks									
the first to use it.	by being the first to purchase it.									
	I am interested in new technology	.56525*	.05294	.000	.4208	.7097				
	but prefer to wait for others to try it									
	first.									
	I am not thrilled by new	.91327*	.07669	.000	.7040	1.1226				
	technology but might purchase									
	after it has been on the market for									
	some time.									
	I have little affinity with new	1.09123*	.09437	.000	.8337	1.3488				
	technology and do not like to buy									
	it unless necessary.									
I am interested in new technology	I closely follow new technology	-1.00350 [*]	.07649	.000	-1.2123	7947				
but prefer to wait for others to try it	and am comfortable taking risks									
first.	by being the first to purchase it.									
	I see potential advantages in new	56525 [*]	.05294	.000	7097	4208				
	technology and like to be among									
	the first to use it.									
	I am not thrilled by new	.34802*	.07091	.000	.1545	.5416				
	technology but might purchase									
	after it has been on the market for									
	some time.									

Dependent Variable – T1 Support for hydrogen – Survey start											
(I) When thinking of your	(J) When thinking of your	Mean			95% Confide Interval	ence					
response to new technology,	response to new technology,	Difference (I-	Std.		Lower	Upper					
which best describes you?	which best describes you?	J)	Error	Sig.	Bound	Bound					
	I have little affinity with new technology and do not like to buy it unless necessary.	.52598*	.08974	.000	.2811	.7709					
l am not thrilled by new technology but might purchase	l closely follow new technology and am comfortable taking risks	-1.35152*	.09449	.000	-1.6094	-1.0936					
after it has been on the market for	by being the first to purchase it.										
some time.	I see potential advantages in new technology and like to be among the first to use it.	91327*	.07669	.000	-1.1226	7040					
	I am interested in new technology but prefer to wait for others to try it first.	34802*	.07091	.000	5416	1545					
	I have little affinity with new technology and do not like to buy it unless necessary.	.17796	.10550	.442	1100	.4659					
I have little affinity with new	I closely follow new technology	-1.52948 [*]	.10933	.000	-1.8279	-1.2311					
technology and do not like to buy it unless necessary.	and am comfortable taking risks by being the first to purchase it.										
	I see potential advantages in new technology and like to be among the first to use it.	-1.09123 [*]	.09437	.000	-1.3488	8337					
	I am interested in new technology but prefer to wait for others to try it first.	52598 [*]	.08974	.000	7709	2811					
	I am not thrilled by new technology but might purchase after it has been on the market for some time.	17796	.10550	.442	4659	.1100					
r. The mean difference is significar	nt at the 0.05 level.										

Dependent Variable –	T2 Support for hydrog	en – Befoi	re con	nms m	essage	
(I) When thinking of your	(1) When thinking of your				95% Confide	ence Interval
response to new	response to new	Mean			55 /0 Connat	
technology, which best	technology, which best	Difference	Std.		Lower	Upper
describes you?	describes you?	(I-J)	Error	Sig.	Bound	Bound
I closely follow new	I see potential advantages in	.29724*	.07659	.001	.0882	.5063
technology and am	new technology and like to					
comfortable taking risks by	be among the first to use it.					
being the first to purchase it.						
	I am interested in new	.60070*	.07156	.000	.4054	.7960
	technology but prefer to wait					
	for others to try it first.					
	I am not thrilled by new	.85091*	.08840	.000	.6096	1.0922
	technology but might					
	purchase after it has been					
	on the market for some time.					
	I have little affinity with new	1.29009*	.10228	.000	1.0109	1.5693
	technology and do not like to					
	buy it unless necessary.					
I see potential advantages in	l closely follow new	29724*	.07659	.001	5063	0882
new technology and like to	technology and am					
be among the first to use it.	comfortable taking risks by					
	being the first to purchase it.					
	I am interested in new	.30346*	.04952	.000	.1683	.4386
	technology but prefer to wait					
	for others to try it first.					
	I am not thrilled by new	.55367*	.07174	.000	.3579	.7495
	technology but might					
	purchase after it has been					
	on the market for some time.					
	I have little affinity with new	.99284*	.08828	.000	.7519	1.2338
	technology and do not like to					
	buy it unless necessary.					
I am interested in new	I closely follow new	60070*	.07156	.000	7960	4054
technology but prefer to wait	technology and am					
for others to try it first.	comfortable taking risks by					
	being the first to purchase it.					
	I see potential advantages in	30346*	.04952	.000	4386	1683
	new technology and like to					
	be among the first to use it.					
	I am not thrilled by new	.25021	.06634	.002	.0691	.4313
	technology but might					
	purchase after it has been					
	on the market for some time.	00000*	00005	000	4000	0405
	I have little affinity with new	.68939	.08395	.000	.4602	.9185
	technology and do not like to					
	buy it unless necessary.	05004*	00040	000	4 0000	0000
tach not thrilled by new	I CIOSELY TOILOW NEW	85091	.08840	.000	-1.0922	0090
echnology but might	echnology and am					
purchase after it has been	comfortable taking risks by					
on the market for some time.	Lease potential advantages in	55267*	07474	000	7405	2570
	i see potential advantages in	55367	.07174	.000	/495	3519
	he among the first to use it					

Table 43 Support for hydrogen by innovator category Time 2– multiple comparisons (Tukey HSD)

Dependent Variable –	T2 Support for hydrog	en – Befoi	re con	nms m	nessage	
(I) When thinking of your	(J) When thinking of your				95% Confide	ence Interval
response to new	response to new	Mean				
technology, which best	technology, which best	Difference	Std.		Lower	Upper
describes you?	describes you?	(I-J)	Error	Sig.	Bound	Bound
	I am interested in new	25021*	.06634	.002	4313	0691
	technology but prefer to wait					
	for others to try it first.					
	I have little affinity with new	.43917*	.09870	.000	.1698	.7086
	technology and do not like to					
	buy it unless necessary.					
I have little affinity with new	I closely follow new					
technology and do not like to	technology and am					
buy it unless necessary.	comfortable taking risks by	4.00000*	40000	000	4 5000	4 0 4 0 0
,	being the first to purchase it.	-1.29009	.10228	.000	-1.5693	-1.0109
	I see potential advantages in					
	new technology and like to	00004*			4 0000	
	be among the first to use it.	99284	.08828	.000	-1.2338	7519
	I am interested in new					
	technology but prefer to wait	*				
	for others to try it first.	68939	.08395	.000	9185	4602
	I am not thrilled by new					
	technology but might					
	purchase after it has been	*				
	on the market for some time.	43917	.09870	.000	7086	1698
 The mean difference is signal 	nificant at the 0.05 level.					

						95% Cor Interval f	ifidence for Mean		
				Std.	Std.	Lower	Upper		
		Ν	Mean	Deviation	Error	Bound	Bound	Minimum	Maximum
T1 Support for	Never a problem	1781	5.3672	1.25328	.02970	5.3090	5.4255	1.00	7.00
hydrogen - Survey	to pay								
start	Sometimes a	622	5.3376	1.21789	.04883	5.2417	5.4335	1.00	7.00
	problem to pay								
	Always struggle	209	4.9856	1.36042	.09410	4.8001	5.1712	1.00	7.00
	to pay								
	Total	2612	5.3296	1.25756	.02461	5.2814	5.3779	1.00	7.00
T2 Support for	Never a problem	1781	5.9085	1.10466	.02618	5.8571	5.9598	1.00	7.00
hydrogen - Before	to pay								
comms message	Sometimes a	622	5.8280	1.11251	.04461	5.7404	5.9156	1.00	7.00
	problem to pay								
	Always struggle	209	5.5598	1.43027	.09893	5.3648	5.7549	1.00	7.00
	to pay								
	Total	2612	5.8614	1.13942	.02229	5.8177	5.9051	1.00	7.00

Table 44 Support for hydrogen by ability to pay electricity bills – Descriptives

Table 45 Support for hydrogen by ability to pay electricity bills – ANOVA

		Sum of		Mean		
		Squares	df	Square	F	Sig.
T1 Support for hydrogen - Survey start	Between	27.285	2	13.642	8.677	.000
	Groups					
	Within Groups	4101.902	2609	1.572		
	Total	4129.186	2611			
T2 Support for hydrogen - Before comms	Between	23.652	2	11.826	9.166	.000
message	Groups					
	Within Groups	3366.178	2609	1.290		
	Total	3389.830	2611			

		Mean			95% Confide Interval	ence
(I) BillPayElect_3groups	(J) BillPayElect_3groups	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Never a problem to pay	Sometimes a problem to pay	.02959	.05840	.868	1074	.1665
	Always struggle to pay	.38156*	.09168	.000	.1666	.5966
Sometimes a problem	Never a problem to pay	02959	.05840	.868	1665	.1074
to pay	Always struggle to pay	.35197*	.10025	.001	.1169	.5871
Always struggle to pay	Never a problem to pay	38156 [*]	.09168	.000	5966	1666
	Sometimes a problem to pay	35197*	.10025	.001	5871	1169
Never a problem to pay	Sometimes a problem to pay	.08050	.05290	.281	0436	.2046
	Always struggle to pay	.34867*	.08305	.000	.1539	.5434
Sometimes a problem	Never a problem to pay	08050	.05290	.281	2046	.0436
to pay	Always struggle to pay	.26817*	.09082	.009	.0552	.4811
Always struggle to pay	Never a problem to pay	34867*	.08305	.000	5434	1539
	Sometimes a problem to pay	26817 [*]	.09082	.009	4811	0552
	(I) BillPayElect_3groups Never a problem to pay Sometimes a problem to pay Always struggle to pay Never a problem to pay Sometimes a problem to pay Always struggle to pay	(I)(J)BillPayElect_3groupsBillPayElect_3groupsNever a problem to paySometimes a problem to paySometimes a problem to payNever a problem to paySometimes a problem to payNever a problem to payAlways struggle to payNever a problem to payAlways struggle to payNever a problem to payAlways struggle to payNever a problem to paySometimes a problem to paySometimes a problem to payNever a problem to paySometimes a problem to payNever a problem to payNever a problem to paySometimes a problem to payNever a problem to paySometimes a problem to payNever a problem to paySometimes a problem to payNever a problem to payAlways struggle to payNever a problem to paySometimes a problem to payNever a problem to payAlways struggle to payNever a problem to paySometimes a problem to payNever a problem to payAlways struggle to payNever a problem to payAlways struggle to payNever a problem to payAlways struggle to payNever a problem to paySometimes a problem to payNever a problem to pay	(I)(J)MeanBillPayElect_3groupsBillPayElect_3groups(I-J)Never a problem to paySometimes a problem to pay.02959Sometimes a problem to pay.02959Always struggle to pay.38156*Sometimes a problem to payNever a problem to pay Always struggle to pay.35197*Always struggle to payNever a problem to pay Always struggle to pay.35197*Always struggle to payNever a problem to pay 38156*.08050Never a problem to pay.08050.08050Never a problem to pay.08050.08050Never a problem to pay.08050.08050Never a problem to pay.34867*.08050Never a problem to pay.08050.08050Always struggle to pay.34867*.08050Sometimes a problem to pay.08050.08050Always struggle to pay.26817*.34867*Sometimes a problem to pay.26817*.26817*Always struggle to pay.26817*.26817*	(I) BillPayElect_3groups(J) BillPayElect_3groupsMean Difference (I-J)Std. ErrorNever a problem to pay Always struggle to pay 	(I)(J)Mean Difference (I-J)Std. ErrorBillPayElect_3groupsBillPayElect_3groups(I-J)ErrorNever a problem to paySometimes a problem to pay.02959.05840Sometimes a problem to pay.02959.05840.868Sometimes a problem to payNever a problem to pay.38156°.09168.000Sometimes a problem to payNever a problem to pay.02959.05840.868Always struggle to pay.35197°.10025.001Always struggle to pay.35197°.10025.001Always struggle to pay.35197°.10025.001Never a problem to pay.35197°.10025.001Never a problem to pay.36850.05290.281Never a problem to pay.34867°.08305.000Sometimes a problem to payNever a problem to pay.34867°.08305.000Sometimes a problem to payNever a problem to pay.34867°.08305.000Sometimes a problem to payNever a problem to pay.34867°.08305.000Always struggle to payNever a problem to pay.34867°.08305.000Sometimes a problem to pay.09082.009.00982.009Always struggle to pay.02817°.09082.009.00982.009Always struggle to pay.02817°.09082.009.009.00982.009Always struggle to payNever a problem to pay.26817	(I)(J)DifferenceStd.LowerBillPayElect_3groupsBillPayElect_3groups(I-J)ErrorSig. BoundNever a problem to paySometimes a problem02959.05840.8681074Always struggle to pay.38156*.09168.000.1666Sometimes a problemNever a problem to pay.02959.05840.8681665Always struggle to pay.38156*.09168.000.1666Sometimes a problemNever a problem to pay.32197*.10025.001.1169Always struggle to pay.38156*.09168.0005966.50metimes a problem.35197*.10025.0015871Never a problem to pay.38156*.09168.0005966.0005966.0015871.10025.0015871Never a problem to pay.38156*.08050.05290.2810436.002.1539Never a problem to pay.34867*.08305.000.1539.003.05Sometimes a problem.08050.05290.2812046.091.0522Always struggle to pay.34867*.08305.000.1539Sometimes a problem.26817*.09082.009.0552Always struggle to pay.34867*.08305.0005434Sometimes a problem.26817*.09082.0094811to pay.02617*.09082.0094811to pay.02617*.09082.0094811to pay.02617*.09082.0094811

Table 46 Support for hydrogen by ability to pay electricity bills – multiple comparisons Tukey HSD

						95% Cor Interval f	fidence for Mean		
				Std.	Std.	Lower	Upper		
		N	Mean	Deviation	Error	Bound	Bound	Minimum	Maximum
T1 Support for hydrogen - Survey	Never a problem to pay	1137	5.4274	1.24055	.03679	5.3553	5.4996	1.00	7.00
start	Sometimes a problem to pay	339	5.3805	1.18160	.06418	5.2543	5.5068	1.00	7.00
	Always struggle to pay	97	5.0722	1.40125	.14227	4.7898	5.3546	1.00	7.00
	Total	1573	5.3954	1.24075	.03128	5.3341	5.4568	1.00	7.00
T2 Support for hydrogen - Before	Never a problem to pay	1137	5.9464	1.07128	.03177	5.8840	6.0087	1.00	7.00
comms message	Sometimes a problem to pay	339	5.8614	1.09394	.05941	5.7445	5.9782	1.00	7.00
	Always struggle to pay	97	5.5979	1.44813	.14704	5.3061	5.8898	1.00	7.00
	Total	1573	5.9065	1.10552	.02787	5.8519	5.9612	1.00	7.00

Table 47 Support for hydrogen by ability to pay gas bills – Descriptives

Table 48 Support for hydrogen by ability to pay gas bills – ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
T1 Support for hydrogen	Between Groups	11.377	2	5.688	3.708	.025
	Within Groups	2408.670	1570	1.534		
	Total	2420.047	1572			
T2 Support for hydrogen	Between Groups	11.732	2	5.866	4.823	.008
	Within Groups	1909.531	1570	1.216		
	Total	1921.263	1572			

						95% Cor	nfidence
			Mean			Interval	
Dependent	(I)	(J)	Difference (I-	Std.		Lower	Upper
Variable	BillPayGas_3groups	BillPayGas_3groups	J)	Error	Sig.	Bound	Bound
T1 Support for	Never a problem to pay	Sometimes a problem to	.04691	.07665	.814	1329	.2267
hydrogen		рау					
		Always struggle to pay	.35528*	.13102	.019	.0479	.6626
	Sometimes a problem to	Never a problem to pay	04691	.07665	.814	2267	.1329
	рау	Always struggle to pay	.30837	.14263	.078	0262	.6430
	Always struggle to pay	Never a problem to pay	35528 [*]	.13102	.019	6626	0479
		Sometimes a problem to	30837	.14263	.078	6430	.0262
		рау					
T2 Support for	Never a problem to pay	Sometimes a problem to	.08499	.06825	.427	0751	.2451
hydrogen		рау					
		Always struggle to pay	.34841*	.11666	.008	.0747	.6221
	Sometimes a problem to	Never a problem to pay	08499	.06825	.427	2451	.0751
	рау	Always struggle to pay	.26342	.12699	.096	0345	.5613
	Always struggle to pay	Never a problem to pay	34841 [*]	.11666	.008	6221	0747
		Sometimes a problem to	26342	.12699	.096	5613	.0345
		рау					
*. The mean diff	erence is significant at th	e 0.05 level.					

Table 49 Support for hydrogen by ability to pay gas bills (Post Hoc Tests) – Multiple comparisons (Tukey HSD)

						95% Co	nfidence		
						Interv	val for		
						Me	an		
				Std.	Std.	Lower	Upper		
		N	Mean	Deviation	Error	Bound	Bound	Minimum	Maximum
T1 Support for	Blending H2 is	612	5.2484	1.26662	.05120	5.1478	5.3489	1.00	7.00
hydrogen	a first step								
	Economic	602	5.3256	1.26661	.05162	5.2242	5.4270	1.00	7.00
	benefits								
	100% green H2	604	5.3560	1.22743	.04994	5.2579	5.4540	1.00	7.00
	Govt/ind	599	5.3406	1.24070	.05069	5.2410	5.4401	1.00	7.00
	making								
	hydrogen								
	affordable								
	Control group	603	5.3018	1.27137	.05177	5.2001	5.4035	1.00	7.00
	(no message)								
	Total	3020	5.3142	1.25444	.02283	5.2695	5.3590	1.00	7.00
T2 Support for	Blending H2 is	612	5.7990	1.18382	.04785	5.7050	5.8930	1.00	7.00
hydrogen	a first step								
	Economic	602	5.9153	1.11164	.04531	5.8263	6.0043	1.00	7.00
	benefits								
	100% green H2	604	5.8725	1.15268	.04690	5.7804	5.9646	1.00	7.00
	Govt/ind	599	5.7997	1.14059	.04660	5.7081	5.8912	1.00	7.00
	making								
	hydrogen								
	affordable								
	Control group	603	5.8690	1.13290	.04614	5.7784	5.9596	1.00	7.00
	(no message)								
	Total	3020	5.8510	1.14485	.02083	5.8101	5.8918	1.00	7.00
T3 Support for	Blending H2 is	612	5.76	1.167	.047	5.67	5.85	1	7
hydrogen -	a first step								
Final (Post	Economic	602	6.03	1.101	.045	5.94	6.12	1	7
message/T2 for	benefits								
Control group)	100% green H2	604	6.14	1.101	.045	6.05	6.23	1	7
	Govt/ind	599	5.85	1.099	.045	5.77	5.94	1	7
	making								
	hydrogen								
	affordable								
	Control group	603	5.87	1.133	.046	5.78	5.96	1	7
	(no message)								
	Total	3020	5.93	1.128	.021	5.89	5.97	1	7

Table 50 Message effects on support for hydrogen - Descriptives

Table 51. Message effects on support for hydrogen - Multiple Comparisons (Tukey HSD)

						95% Confid	dence
			Mean			Interval	
Dependent	(I) Message	(J) Message	Difference	Std.		Lower	Upper
Variable	stream	stream	(I-J)	Error	Sig.	Bound	Bound
T1 Support for	Blending H2 is a	Economic benefits	07722	.07202	.821	2738	.1194
hydrogen	first step	100% green H2	10759	.07196	.566	3040	.0888
		Govt/ind making	09220	.07212	.705	2890	.1046
		hydrogen					
		affordable					
		Control group (no	05346	.07199	.946	2500	.1430
		message)					
	Economic benefits	Blending H2 is a	.07722	.07202	.821	1194	.2738
		first step					
		100% green H2	03038	.07226	.993	2276	.1669
		Govt/ind making	01499	.07241	1.000	2126	.1827
		hydrogen					
		affordable					
		Control group (no	.02376	.07229	.997	1736	.2211
		message)					
	100% green H2	Blending H2 is a	.10759	.07196	.566	0888	.3040
		first step					
		Economic benefits	.03038	.07226	.993	1669	.2276
		Govt/ind making	.01539	.07235	1.000	1821	.2129
		hydrogen					
		affordable					
		Control group (no	.05414	.07223	.945	1430	.2513
		message)					
	Govt/ind making	Blending H2 is a	.09220	.07212	.705	1046	.2890
	hydrogen	first step					
	affordable	Economic benefits	.01499	.07241	1.000	1827	.2126
		100% green H2	01539	.07235	1.000	2129	.1821
		Control group (no	.03874	.07238	.984	1588	.2363
		message)					
	Control group (no	Blending H2 is a	.05346	.07199	.946	1430	.2500
	message)	first step					
		Economic benefits	02376	.07229	.997	2211	.1736
		100% green H2	05414	.07223	.945	2513	.1430
		Govt/ind making	03874	.07238	.984	2363	.1588
		hydrogen					
		affordable					

						95% Confic Interval	lence
Dependent	(I) Message	(I) Message	Mean Difference	644		Lower	Upper
Variable	stream	stream	(I-J)	Error	Sig.	Bound	Bound
T2 Support for	Blending H2 is a	Economic benefits	11626	.06571	.392	2956	.0631
hydrogen	first step	100% green H2	07350	.06566	.796	2527	.1057
		Govt/ind making	00065	.06579	1.000	1802	.1789
		hydrogen					
		affordable					
		Control group (no	06997	.06568	.824	2492	.1093
		message)					
	Economic benefits	Blending H2 is a	.11626	.06571	.392	0631	.2956
		first step					
		100% green H2	.04277	.06593	.967	1372	.2227
		Govt/ind making	.11562	.06606	.403	0647	.2959
		hydrogen					
		affordable					
		Control group (no	.04629	.06595	.956	1337	.2263
		message)					
	100% green H2	Blending H2 is a	.07350	.06566	.796	1057	.2527
		first step					
		Economic benefits	04277	.06593	.967	2227	.1372
		Govt/ind making	.07285	.06601	.805	1073	.2530
		hydrogen					
		affordable					
		Control group (no	.00353	.06590	1.000	1763	.1834
		message)					
	Govt/ind making	Blending H2 is a	.00065	.06579	1.000	1789	.1802
	hydrogen		44500			0.050	00.47
	affordable	Economic benefits	11562	.06606	.403	2959	.0647
		100% green H2	07285	.06601	.805	2530	.1073
		Control group (no	06932	.06604	.832	2496	.1109
	Control anoun (no	Message)	00007	00500	004	1000	2402
		first stop	.06997	.00508	.824	1093	.2492
	message)	Economic bonofite	04620	06505	056	2262	1227
			04029	06500	1 000	2203	1762
		Govt/ind making	00000	06604	1.000	1034	2/06
		hydrogen	.00302	.00004	.052	1109	.2430
		affordable					
hydrogen	first step Economic benefits 100% green H2 Govt/ind making hydrogen affordable Control group (no message)	100% green H2Govt/ind makinghydrogenaffordableControl group (nomessage)Blending H2 is afirst step100% green H2Govt/ind makinghydrogenaffordableControl group (nomessage)Blending H2 is afirst stepEconomic benefitsGovt/ind makinghydrogenaffordableControl group (nomessage)Blending H2 is afirst stepEconomic benefitsGovt/ind makinghydrogenaffordableControl group (nomessage)Blending H2 is afirst stepEconomic benefits100% green H2Control group (nomessage)Blending H2 is afirst stepEconomic benefits100% green H2Govt/ind makinghydrogenaffordable	07350 00065 06997 .11626 .04277 .11562 .04629 .07350 04629 .07350 04277 .07285 .07353 .00065 11562 07285 06932 .06997 04629 00353 .06932	.06566 .06579 .06568 .06593 .06693 .06696 .06595 .06601 .06691 .06691 .06691 .06693 .06693 .06693 .06693 .06693 .06693 .06694	.796 1.000 .824 .392 .967 .403 .956 .796 .956 1.000 1.000 1.000 1.000 .805 .805 .805 .805 .805 .805 .805 .805 .805 .805 .805 .805 .832	2527 1802 2492 0631 1372 0647 1337 1057 1057 2227 1073 1057 2227 1073 1763 2959 2530 2496 2496 1093 2496 1093 2263 1834 1109	.10 .11 .11 .10 .29 .22 .29 .29 .29 .29 .29 .29 .29 .29

	(I) Mossago				95% Confidence Interval		
Dependent		(.I) Message	Mean Difference	Std		Lower	Upper
Variable	stream	stream	(I-J)	Error	Sig.	Bound	Bound
T3 Support forBlending H2 is ahydrogen - Finalfirst step		Economic benefits	270 [*]	.064	.000	45	09
		100% green H2	379*	.064	.000	55	20
(Post message/T2	(Post message/T2		097	.064	.563	27	.08
for Control group)		hydrogen					
		affordable					
		Control group (no	111	.064	.420	29	.06
		message)					
	Economic benefits	Blending H2 is a	.270*	.064	.000	.09	.45
		first step					
		100% green H2	109	.065	.439	29	.07
		Govt/ind making	.173	.065	.057	.00	.35
		hydrogen					
		affordable					
		Control group (no	.159	.065	.099	02	.34
		message)					
	100% green H2	Blending H2 is a	.379*	.064	.000	.20	.55
		first step					
		Economic benefits	.109	.065	.439	07	.29
		Govt/ind making	.283*	.065	.000	.11	.46
		hydrogen					
		affordable					
		Control group (no	.268*	.065	.000	.09	.44
		message)					
	Govt/ind making	Blending H2 is a	.097	.064	.563	08	.27
	hydrogen	first step					
	affordable	Economic benefits	173	.065	.057	35	.00
		100% green H2	283*	.065	.000	46	11
		Control group (no	014	.065	.999	19	.16
		message)					
	Control group (no	Blending H2 is a	.111	.064	.420	06	.29
	message)	first step					
		Economic benefits	159	.065	.099	34	.02
		100% green H2	268*	.065	.000	44	09
		Govt/ind making	.014	.065	.999	16	.19
		hydrogen					
		affordable					
*. The mean differe	nce is significant at t	he 0.05 level.					

*. The mean difference is significant at the 0.05 level.

Statement: I support the idea of Australia exporting hydrogen

					95% Confider for Mean	nce Interval		
	N	Mean	Std. Deviation	Std. Error	Lower	Upper	Minimum	Maximum
		mouri	Boviation		Bouria	Bouriu		maximam
Liberal/National	613	5.69	1.496	.060	5.57	5.80	1	7
Labor	497	5.55	1.621	.073	5.41	5.70	1	7
Greens	194	5.37	1.708	.123	5.12	5.61	1	7
Other	209	5.27	1.598	.111	5.05	5.49	1	7
Total	1513	5.54	1.586	.041	5.46	5.62	1	7

Table 53 Support for hydrogen export and facilities by political party preference – Multiple Comparisons (Games-Howell)

(I) If there would be	(J) If there would be				95% Confidence Interval	
federal elections on next Sunday, which party would you vote for	federal elections on next Sunday, which party would you vote for	Mean Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
Liberal/National	Labor	.132	.095	.503	11	.38
	Greens	.319	.137	.093	03	.67
	Other	.417*	.126	.006	.09	.74
Labor	Liberal/National	132	.095	.503	38	.11
	Greens	.187	.143	.555	18	.56
	Other	.285	.132	.137	06	.63
Greens	Liberal/National	319	.137	.093	67	.03
	Labor	187	.143	.555	56	.18
	Other	.098	.165	.934	33	.52
Other	Liberal/National	417*	.126	.006	74	09
	Labor	285	.132	.137	63	.06
	Greens	098	.165	.934	52	.33

*. The mean difference is significant at the 0.05 level.
Table 54 Support for hydrogen export facility being built nearby by political party preference - Descriptives

					Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Liberal/National	613	5.69	1.496	.060	5.57	5.80	1	7
Labor	497	5.55	1.621	.073	5.41	5.70	1	7
Greens	194	5.37	1.708	.123	5.12	5.61	1	7
Other	209	5.27	1.598	.111	5.05	5.49	1	7
Total	1513	5.54	1.586	.041	5.46	5.62	1	7

Statement: I support the idea of a hydrogen export facility being built near me

Dependent Va	Dependent Variable - Support for hydrogen export facility being built nearby									
(I) If there would be federal	(J) If there would be federal					95% Confidence Interval				
elections on next Sunday, which party would you vote for	elections on next Sunday, which party would you vote for	Mean Difference (I-J)	Std	Error	Sig.	Lower Bound	Upper Bound			
Liberal/National	Labor	03	5	.103	.986	30	.23			
	Greens	.09	6	.141	.903	27	.46			
	Other	.581	*	.137	.000	.23	.93			
Labor	Liberal/National	.03	5	.103	.986	23	.30			
	Greens	.13	2	.144	.799	24	.50			
	Other	.616	;*	.141	.000	.25	.98			
Greens	Liberal/National	09	6	.141	.903	46	.27			
	Labor	13	2	.144	.799	50	.24			
	Other	.484	*	.170	.023	.05	.92			
Other	Liberal/National	581	*	.137	.000	93	23			
	Labor	616*	.141		.000	98	25			
	Greens	484*	.170		.023	92	05			

Table 55 Support for hydrogen export facility being built nearby by political party preference – Multiple Comparisons (Tukey HSD)

*. The mean difference is significant at the 0.05 level.

(I) State	(J) State	Mean Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
NSW	VIC	023	.079	1.000	26	.22
	QLD	.046	.086	.999	22	.31
	SA	200	.110	.604	53	.13
	WA	208	.109	.546	54	.12
	TAS	.001	.208	1.000	63	.63
	NT	384	.313	.923	-1.33	.57
	ACT	277	.224	.921	96	.40
VIC	NSW	.023	.079	1.000	22	.26
	QLD	.069	.089	.994	20	.34
	SA	177	.112	.763	52	.16
	WA	185	.111	.714	52	.15
	TAS	.024	.209	1.000	61	.66
	NT	361	.314	.945	-1.31	.59
	ACT	254	.226	.951	94	.43
QLD	NSW	046	.086	.999	31	.22
	VIC	069	.089	.994	34	.20
	SA	246	.117	.414	60	.11
	WA	254	.116	.363	61	.10
	TAS	045	.212	1.000	69	.60
	NT	431	.315	.873	-1.39	.53
	ACT	323	.228	.849	-1.02	.37
SA	NSW	.200	.110	.604	13	.53
	VIC	.177	.112	.763	16	.52
	QLD	.246	.117	.414	11	.60
	WA	008	.135	1.000	42	.40
	TAS	.201	.222	.986	47	.88
	NT	184	.323	.999	-1.16	.80
	ACT	077	.238	1.000	80	.65
WA	NSW	.208	.109	.546	12	.54
	VIC	.185	.111	.714	15	.52
	QLD	.254	.116	.363	10	.61
	SA	.008	.135	1.000	40	.42
	TAS	.209	.222	.982	47	.88
	NT	177	.322	.999	-1.16	.80
	ACT	069	.238	1.000	79	.65

Table 56 Multiple comparisons between States of agreement with Hydrogen – (Tukey HSD)

(I) State	(J) State	Mean Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
TAS	NSW	001	.208	1.000	63	.63
	VIC	024	.209	1.000	66	.61
	QLD	.045	.212	1.000	60	.69
	SA	201	.222	.986	88	.47
	WA	209	.222	.982	88	.47
	NT	385	.368	.967	-1.50	.73
	ACT	278	.296	.982	-1.18	.62
NT	NSW	.384	.313	.923	57	1.33
	VIC	.361	.314	.945	59	1.31
	QLD	.431	.315	.873	53	1.39
	SA	.184	.323	.999	80	1.16
	WA	.177	.322	.999	80	1.16
	TAS	.385	.368	.967	73	1.50
	ACT	.107	.377	1.000	-1.04	1.25
ACT	NSW	.277	.224	.921	40	.96
	VIC	.254	.226	.951	43	.94
	QLD	.323	.228	.849	37	1.02
	SA	.077	.238	1.000	65	.80
	WA	.069	.238	1.000	65	.79
	TAS	.278	.296	.982	62	1.18
	NT	107	.377	1.000	-1.25	1.04

(I) State	(J) State	Mean Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
NSW	VIC	.196	.128	.788	19	.58
	QLD	009	.139	1.000	43	.41
	SA	.344	.177	.516	19	.88
	WA	.636*	.175	.007	.10	1.17
	TAS	.306	.334	.985	71	1.32
	NT	.588	.503	.941	94	2.12
	ACT	019	.361	1.000	-1.12	1.08
VIC	NSW	196	.128	.788	58	.19
	QLD	205	.144	.845	64	.23
	SA	.148	.181	.992	40	.70
	WA	.440	.179	.216	10	.98
	TAS	.110	.337	1.000	91	1.13
	NT	.392	.505	.994	-1.14	1.92
	ACT	215	.363	.999	-1.32	.89
QLD	NSW	.009	.139	1.000	41	.43
	VIC	.205	.144	.845	23	.64
	SA	.354	.189	.569	22	.93
	WA	.645*	.187	.014	.08	1.21
	TAS	.315	.341	.984	72	1.35
	NT	.597	.508	.939	94	2.14
	ACT	010	.367	1.000	-1.12	1.10
SA	NSW	344	.177	.516	88	.19
	VIC	148	.181	.992	70	.40
	QLD	354	.189	.569	93	.22
	WA	.292	.217	.882	37	.95
	TAS	038	.358	1.000	-1.12	1.05
	NT	.243	.519	1.000	-1.33	1.82
	ACT	364	.383	.981	-1.53	.80
WA	NSW	636*	.175	.007	-1.17	10
	VIC	440	.179	.216	98	.10
	QLD	645*	.187	.014	-1.21	08
	SA	292	.217	.882	95	.37
	TAS	330	.357	.984	-1.41	.75
	NT	048	.519	1.000	-1.62	1.53
	ACT	655	.382	.678	-1.82	.51

Table 57. Multiple comparisons between States of agreement with Coal – (Tukey HSD)

(I) State	(J) State	Mean Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
TAS	NSW	306	.334	.985	-1.32	.71
	VIC	110	.337	1.000	-1.13	.91
	QLD	315	.341	.984	-1.35	.72
	SA	.038	.358	1.000	-1.05	1.12
	WA	.330	.357	.984	75	1.41
	NT	.281	.592	1.000	-1.52	2.08
	ACT	326	.477	.997	-1.77	1.12
NT	NSW	588	.503	.941	-2.12	.94
	VIC	392	.505	.994	-1.92	1.14
	QLD	597	.508	.939	-2.14	.94
	SA	243	.519	1.000	-1.82	1.33
	WA	.048	.519	1.000	-1.53	1.62
	TAS	281	.592	1.000	-2.08	1.52
	ACT	607	.608	.975	-2.45	1.24
ACT	NSW	.019	.361	1.000	-1.08	1.12
	VIC	.215	.363	.999	89	1.32
	QLD	.010	.367	1.000	-1.10	1.12
	SA	.364	.383	.981	80	1.53
	WA	.655	.382	.678	51	1.82
	TAS	.326	.477	.997	-1.12	1.77
	NT	.607	.608	.975	-1.24	2.45

(I) State	(J) State	Mean Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
NSW	VIC	.003	.106	1.000	32	.33
	QLD	.093	.116	.993	26	.44
	SA	186	.147	.912	63	.26
	WA	.106	.146	.996	34	.55
	TAS	.091	.279	1.000	75	.94
	NT	.474	.419	.950	80	1.75
	ACT	062	.301	1.000	98	.85
VIC	NSW	003	.106	1.000	33	.32
	QLD	.090	.120	.995	27	.45
	SA	189	.150	.915	65	.27
	WA	.103	.149	.997	35	.56
	TAS	.088	.280	1.000	76	.94
	NT	.471	.421	.953	81	1.75
	ACT	065	.303	1.000	98	.85
QLD	NSW	093	.116	.993	44	.26
	VIC	090	.120	.995	45	.27
	SA	279	.157	.637	76	.20
	WA	.013	.156	1.000	46	.49
	TAS	002	.284	1.000	86	.86
	NT	.381	.423	.986	90	1.66
	ACT	155	.306	1.000	-1.08	.77
SA	NSW	.186	.147	.912	26	.63
	VIC	.189	.150	.915	27	.65
	QLD	.279	.157	.637	20	.76
	WA	.292	.181	.741	26	.84
	TAS	.276	.298	.983	63	1.18
	NT	.660	.433	.794	65	1.97
	ACT	.124	.319	1.000	84	1.09
WA	NSW	106	.146	.996	55	.34
	VIC	103	.149	.997	56	.35
	QLD	013	.156	1.000	49	.46
	SA	292	.181	.741	84	.26
	TAS	015	.298	1.000	92	.89
	NT	.368	.432	.990	94	1.68
	ACT	168	.319	1.000	-1.14	.80

Table 58. Multiple comparisons between States of agreement with Gas – (Tukey HSD)

(I) State	(J) State	Mean	Std.	Sig.	Lower	Upper
		Difference	Error		Bound	Bound
		(I-J)				
TAS	NSW	091	.279	1.000	94	.75
	VIC	088	.280	1.000	94	.76
	QLD	.002	.284	1.000	86	.86
	SA	276	.298	.983	-1.18	.63
	WA	.015	.298	1.000	89	.92
	NT	.383	.493	.994	-1.11	1.88
	ACT	153	.397	1.000	-1.36	1.05
NT	NSW	474	.419	.950	-1.75	.80
	VIC	471	.421	.953	-1.75	.81
	QLD	381	.423	.986	-1.66	.90
	SA	660	.433	.794	-1.97	.65
	WA	368	.432	.990	-1.68	.94
	TAS	383	.493	.994	-1.88	1.11
	ACT	536	.506	.965	-2.07	1.00
ACT	NSW	.062	.301	1.000	85	.98
	VIC	.065	.303	1.000	85	.98
	QLD	.155	.306	1.000	77	1.08
	SA	124	.319	1.000	-1.09	.84
	WA	.168	.319	1.000	80	1.14
	TAS	.153	.397	1.000	-1.05	1.36
	NT	.536	.506	.965	-1.00	2.07

Table 59. Multiple comparisons between States of agreement with Gas or coal with carbon capture and storage – (Tukey HSD)

(I) State	(J) State	Mean Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
NSW	VIC	.038	.113	1.000	31	.38
	QLD	004	.123	1.000	38	.37
	SA	006	.157	1.000	48	.47
	WA	.188	.155	.929	28	.66
	TAS	.016	.297	1.000	88	.92
	NT	.300	.446	.998	-1.06	1.66
	ACT	.193	.320	.999	78	1.16
VIC	NSW	038	.113	1.000	38	.31
	QLD	043	.127	1.000	43	.34
	SA	044	.160	1.000	53	.44
	WA	.150	.159	.982	33	.63
	TAS	022	.298	1.000	93	.88
	NT	.262	.448	.999	-1.10	1.62
	ACT	.155	.322	1.000	82	1.13
QLD	NSW	.004	.123	1.000	37	.38
	VIC	.043	.127	1.000	34	.43
	SA	002	.167	1.000	51	.51
	WA	.192	.166	.943	31	.70
	TAS	.021	.302	1.000	90	.94
	NT	.304	.450	.998	-1.06	1.67
	ACT	.197	.326	.999	79	1.19
SA	NSW	.006	.157	1.000	47	.48
	VIC	.044	.160	1.000	44	.53
	QLD	.002	.167	1.000	51	.51
	WA	.194	.192	.973	39	.78
	TAS	.022	.317	1.000	94	.99
	NT	.306	.461	.998	-1.09	1.70
	ACT	.199	.340	.999	83	1.23
WA	NSW	188	.155	.929	66	.28
	VIC	150	.159	.982	63	.33
	QLD	192	.166	.943	70	.31
	SA	194	.192	.973	78	.39
	TAS	172	.317	.999	-1.13	.79
	NT	.112	.460	1.000	-1.28	1.51
	ACT	.005	.339	1.000	-1.02	1.03

(I) State	(J) State	Mean Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
TAS	NSW	016	.297	1.000	92	.88
	VIC	.022	.298	1.000	88	.93
	QLD	021	.302	1.000	94	.90
	SA	022	.317	1.000	99	.94
	WA	.172	.317	.999	79	1.13
	NT	.284	.525	.999	-1.31	1.88
	ACT	.176	.423	1.000	-1.11	1.46
NT	NSW	300	.446	.998	-1.66	1.06
	VIC	262	.448	.999	-1.62	1.10
	QLD	304	.450	.998	-1.67	1.06
	SA	306	.461	.998	-1.70	1.09
	WA	112	.460	1.000	-1.51	1.28
	TAS	284	.525	.999	-1.88	1.31
	ACT	107	.539	1.000	-1.74	1.53
ACT	NSW	193	.320	.999	-1.16	.78
	VIC	155	.322	1.000	-1.13	.82
	QLD	197	.326	.999	-1.19	.79
	SA	199	.340	.999	-1.23	.83
	WA	005	.339	1.000	-1.03	1.02
	TAS	176	.423	1.000	-1.46	1.11
	NT	.107	.539	1.000	-1.53	1.74

(I) State	(J) State	Mean Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
NSW	VIC	055	.089	.999	32	.22
	QLD	.068	.097	.997	23	.36
	SA	203	.123	.724	58	.17
	WA	359	.122	.067	73	.01
	TAS	237	.234	.972	95	.47
	NT	594	.352	.694	-1.66	.47
	ACT	344	.252	.873	-1.11	.42
VIC	NSW	.055	.089	.999	22	.32
	QLD	.122	.100	.927	18	.43
	SA	148	.126	.939	53	.23
	WA	304	.125	.228	68	.08
	TAS	183	.235	.994	90	.53
	NT	540	.353	.791	-1.61	.53
	ACT	290	.254	.947	-1.06	.48
QLD	NSW	068	.097	.997	36	.23
	VIC	122	.100	.927	43	.18
	SA	270	.132	.446	67	.13
	WA	426*	.131	.025	82	03
	TAS	305	.238	.906	-1.03	.42
	NT	662	.355	.574	-1.74	.41
	ACT	412	.256	.747	-1.19	.37
SA	NSW	.203	.123	.724	17	.58
	VIC	.148	.126	.939	23	.53
	QLD	.270	.132	.446	13	.67
	WA	156	.151	.970	62	.30
	TAS	034	.250	1.000	79	.72
	NT	392	.363	.961	-1.49	.71
	ACT	142	.268	1.000	95	.67
WA	NSW	.359	.122	.067	01	.73
	VIC	.304	.125	.228	08	.68
	QLD	.426*	.131	.025	.03	.82
	SA	.156	.151	.970	30	.62
	TAS	.122	.250	1.000	64	.88
	NT	236	.362	.998	-1.34	.86
	ACT	.014	.267	1.000	80	.83

Table 60. Multiple comparisons between States of agreement with Wind – (Tukey HSD)

(I) State	(J) State	Mean Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
TAS	NSW	.237	.234	.972	47	.95
	VIC	.183	.235	.994	53	.90
	QLD	.305	.238	.906	42	1.03
	SA	.034	.250	1.000	72	.79
	WA	122	.250	1.000	88	.64
	NT	357	.413	.989	-1.61	.90
	ACT	107	.333	1.000	-1.12	.90
NT	NSW	.594	.352	.694	47	1.66
	VIC	.540	.353	.791	53	1.61
	QLD	.662	.355	.574	41	1.74
	SA	.392	.363	.961	71	1.49
	WA	.236	.362	.998	86	1.34
	TAS	.357	.413	.989	90	1.61
	ACT	.250	.424	.999	-1.04	1.54
ACT	NSW	.344	.252	.873	42	1.11
	VIC	.290	.254	.947	48	1.06
	QLD	.412	.256	.747	37	1.19
	SA	.142	.268	1.000	67	.95
	WA	014	.267	1.000	83	.80
	TAS	.107	.333	1.000	90	1.12
	NT	250	.424	.999	-1.54	1.04

(I) State	(J) State	Mean Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
NSW	VIC	044	.083	1.000	30	.21
	QLD	081	.091	.987	36	.19
	SA	149	.116	.902	50	.20
	WA	387*	.115	.017	73	04
	TAS	363	.219	.714	-1.03	.30
	NT	711	.329	.377	-1.71	.29
	ACT	247	.236	.967	96	.47
VIC	NSW	.044	.083	1.000	21	.30
	QLD	037	.094	1.000	32	.25
	SA	105	.118	.987	46	.25
	WA	343	.117	.069	70	.01
	TAS	319	.220	.835	99	.35
	NT	667	.330	.469	-1.67	.34
	ACT	203	.238	.990	92	.52
QLD	NSW	.081	.091	.987	19	.36
	VIC	.037	.094	1.000	25	.32
	SA	068	.123	.999	44	.31
	WA	306	.123	.198	68	.07
	TAS	282	.223	.912	96	.40
	NT	630	.332	.553	-1.64	.38
	ACT	166	.240	.997	89	.56
SA	NSW	.149	.116	.902	20	.50
	VIC	.105	.118	.987	25	.46
	QLD	.068	.123	.999	31	.44
	WA	238	.142	.703	67	.19
	TAS	214	.234	.985	92	.50
	NT	562	.340	.717	-1.59	.47
	ACT	098	.251	1.000	86	.66
WA	NSW	.387*	.115	.017	.04	.73
	VIC	.343	.117	.069	01	.70
	QLD	.306	.123	.198	07	.68
	SA	.238	.142	.703	19	.67
	TAS	.024	.234	1.000	69	.73
	NT	324	.340	.980	-1.35	.71
	ACT	.140	.250	.999	62	.90

Table 61. Multiple comparisons between States of agreement with Solar PV - (Tukey HSD)

(I) State	(J) State	Mean	Std.	Sig.	Lower	Upper
		Difference	Error		Bound	Bound
		(I-J)				
TAS	NSW	.363	.219	.714	30	1.03
	VIC	.319	.220	.835	35	.99
	QLD	.282	.223	.912	40	.96
	SA	.214	.234	.985	50	.92
	WA	024	.234	1.000	73	.69
	NT	348	.387	.986	-1.52	.83
	ACT	.116	.312	1.000	83	1.06
NT	NSW	.711	.329	.377	29	1.71
	VIC	.667	.330	.469	34	1.67
	QLD	.630	.332	.553	38	1.64
	SA	.562	.340	.717	47	1.59
	WA	.324	.340	.980	71	1.35
	TAS	.348	.387	.986	83	1.52
	ACT	.464	.397	.941	74	1.67
ACT	NSW	.247	.236	.967	47	.96
	VIC	.203	.238	.990	52	.92
	QLD	.166	.240	.997	56	.89
	SA	.098	.251	1.000	66	.86
	WA	140	.250	.999	90	.62
	TAS	116	.312	1.000	-1.06	.83
	NT	464	.397	.941	-1.67	.74

Table 62.	Multiple comparisons between	States of agreement with	Oil (e.g.	diesel/petrol for transport) -	· (Tukey
HSD)					

(I) State	(J) State	Mean Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
NSW	VIC	.051	.120	1.000	31	.41
	QLD	.027	.130	1.000	37	.42
	SA	.163	.166	.977	34	.67
	WA	.306	.164	.579	19	.80
	TAS	103	.313	1.000	-1.05	.85
	NT	.438	.472	.983	99	1.87
	ACT	205	.339	.999	-1.23	.82
VIC	NSW	051	.120	1.000	41	.31
	QLD	024	.135	1.000	43	.38
	SA	.111	.169	.998	40	.63
	WA	.254	.168	.801	26	.76
	TAS	155	.315	1.000	-1.11	.80
	NT	.386	.473	.992	-1.05	1.82
	ACT	257	.340	.995	-1.29	.78
QLD	NSW	027	.130	1.000	42	.37
	VIC	.024	.135	1.000	38	.43
	SA	.136	.177	.995	40	.67
	WA	.278	.176	.760	25	.81
	TAS	131	.320	1.000	-1.10	.84
	NT	.410	.476	.989	-1.03	1.86
	ACT	232	.344	.998	-1.28	.81
SA	NSW	163	.166	.977	67	.34
	VIC	111	.169	.998	63	.40
	QLD	136	.177	.995	67	.40
	WA	.143	.203	.997	47	.76
	TAS	266	.336	.993	-1.28	.75
	NT	.275	.487	.999	-1.20	1.75
	ACT	368	.359	.971	-1.46	.72
WA	NSW	306	.164	.579	80	.19
	VIC	254	.168	.801	76	.26
	QLD	278	.176	.760	81	.25
	SA	143	.203	.997	76	.47
	TAS	409	.335	.926	-1.43	.61
	NT	.132	.487	1.000	-1.34	1.61
	ACT	511	.359	.846	-1.60	.58

(I) State	(J) State	Mean	Std.	Sig.	Lower	Upper
		Difference	Error		Bound	Bound
		(I-J)				
TAS	NSW	.103	.313	1.000	85	1.05
	VIC	.155	.315	1.000	80	1.11
	QLD	.131	.320	1.000	84	1.10
	SA	.266	.336	.993	75	1.28
	WA	.409	.335	.926	61	1.43
	NT	.541	.555	.978	-1.14	2.23
	ACT	102	.447	1.000	-1.46	1.26
NT	NSW	438	.472	.983	-1.87	.99
	VIC	386	.473	.992	-1.82	1.05
	QLD	410	.476	.989	-1.86	1.03
	SA	275	.487	.999	-1.75	1.20
	WA	132	.487	1.000	-1.61	1.34
	TAS	541	.555	.978	-2.23	1.14
	ACT	643	.570	.951	-2.37	1.09
ACT	NSW	.205	.339	.999	82	1.23
	VIC	.257	.340	.995	78	1.29
	QLD	.232	.344	.998	81	1.28
	SA	.368	.359	.971	72	1.46
	WA	.511	.359	.846	58	1.60
	TAS	.102	.447	1.000	-1.26	1.46
	NT	.643	.570	.951	-1.09	2.37

(I) State	(J) State	Mean Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
NSW	VIC	.329	.135	.226	08	.74
	QLD	.355	.147	.235	09	.80
	SA	206	.187	.957	77	.36
	WA	.700*	.186	.004	.14	1.26
	TAS	.523	.354	.820	55	1.60
	NT	.231	.534	1.000	-1.39	1.85
	ACT	269	.383	.997	-1.43	.89
VIC	NSW	329	.135	.226	74	.08
	QLD	.026	.152	1.000	44	.49
	SA	535	.191	.097	-1.12	.05
	WA	.371	.190	.515	21	.95
	TAS	.194	.357	.999	89	1.28
	NT	098	.535	1.000	-1.72	1.53
	ACT	598	.385	.778	-1.77	.57
QLD	NSW	355	.147	.235	80	.09
	VIC	026	.152	1.000	49	.44
	SA	561	.200	.094	-1.17	.05
	WA	.345	.199	.661	26	.95
	TAS	.168	.361	1.000	93	1.27
	NT	124	.538	1.000	-1.76	1.51
	ACT	624	.389	.749	-1.81	.56
SA	NSW	.206	.187	.957	36	.77
	VIC	.535	.191	.097	05	1.12
	QLD	.561	.200	.094	05	1.17
	WA	.906*	.230	.002	.21	1.60
	TAS	.729	.379	.536	42	1.88
	NT	.437	.551	.993	-1.23	2.11
	ACT	063	.406	1.000	-1.30	1.17
WA	NSW	700*	.186	.004	-1.26	14
	VIC	371	.190	.515	95	.21
	QLD	345	.199	.661	95	.26
	SA	906*	.230	.002	-1.60	21
	TAS	177	.379	1.000	-1.33	.97
	NT	469	.550	.990	-2.14	1.20
	ACT	969	.405	.247	-2.20	.26

Table 63. Multiple comparisons between States of agreement with Nuclear (for power) – (Tukey HSD)

(I) State	(J) State	Mean	Std.	Sig.	Lower	Upper
		Difference	Error		Bound	Bound
		(I-J)				
TAS	NSW	523	.354	.820	-1.60	.55
	VIC	194	.357	.999	-1.28	.89
	QLD	168	.361	1.000	-1.27	.93
	SA	729	.379	.536	-1.88	.42
	WA	.177	.379	1.000	97	1.33
	NT	292	.627	1.000	-2.20	1.61
	ACT	792	.505	.770	-2.33	.74
NT	NSW	231	.534	1.000	-1.85	1.39
	VIC	.098	.535	1.000	-1.53	1.72
	QLD	.124	.538	1.000	-1.51	1.76
	SA	437	.551	.993	-2.11	1.23
	WA	.469	.550	.990	-1.20	2.14
	TAS	.292	.627	1.000	-1.61	2.20
	ACT	500	.644	.994	-2.45	1.45
ACT	NSW	.269	.383	.997	89	1.43
	VIC	.598	.385	.778	57	1.77
	QLD	.624	.389	.749	56	1.81
	SA	.063	.406	1.000	-1.17	1.30
	WA	.969	.405	.247	26	2.20
	TAS	.792	.505	.770	74	2.33
	NT	.500	.644	.994	-1.45	2.45

(I) State	(J) State	Mean Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
NSW	VIC	.084	.082	.970	16	.33
	QLD	.157	.089	.645	11	.43
	SA	139	.113	.922	48	.20
	WA	.212	.112	.556	13	.55
	TAS	191	.214	.987	84	.46
	NT	106	.322	1.000	-1.08	.87
	ACT	249	.231	.961	95	.45
VIC	NSW	084	.082	.970	33	.16
	QLD	.072	.092	.994	21	.35
	SA	223	.116	.528	57	.13
	WA	.128	.115	.953	22	.48
	TAS	275	.215	.908	93	.38
	NT	190	.323	.999	-1.17	.79
	ACT	333	.232	.841	-1.04	.37
QLD	NSW	157	.089	.645	43	.11
	VIC	072	.092	.994	35	.21
	SA	296	.121	.218	66	.07
	WA	.056	.120	1.000	31	.42
	TAS	347	.218	.756	-1.01	.31
	NT	263	.325	.993	-1.25	.72
	ACT	406	.235	.670	-1.12	.31
SA	NSW	.139	.113	.922	20	.48
	VIC	.223	.116	.528	13	.57
	QLD	.296	.121	.218	07	.66
	WA	.352	.139	.182	07	.77
	TAS	051	.229	1.000	75	.64
	NT	.033	.332	1.000	98	1.04
	ACT	110	.245	1.000	85	.63
WA	NSW	212	.112	.556	55	.13
	VIC	128	.115	.953	48	.22
	QLD	056	.120	1.000	42	.31
	SA	352	.139	.182	77	.07
	TAS	403	.229	.646	-1.10	.29
	NT	319	.332	.980	-1.33	.69
	ACT	461	.245	.562	-1.20	.28

Table 64. Multiple comparisons between States of agreement with Biomass – (Tukey HSD)

(I) State	(J) State	Mean	Std.	Sig.	Lower	Upper
		Difference	Error		Bound	Bound
		(I-J)				
TAS	NSW	.191	.214	.987	46	.84
	VIC	.275	.215	.908	38	.93
	QLD	.347	.218	.756	31	1.01
	SA	.051	.229	1.000	64	.75
	WA	.403	.229	.646	29	1.10
	NT	.084	.379	1.000	-1.07	1.23
	ACT	058	.305	1.000	98	.87
NT	NSW	.106	.322	1.000	87	1.08
	VIC	.190	.323	.999	79	1.17
	QLD	.263	.325	.993	72	1.25
	SA	033	.332	1.000	-1.04	.98
	WA	.319	.332	.980	69	1.33
	TAS	084	.379	1.000	-1.23	1.07
	ACT	143	.389	1.000	-1.32	1.04
ACT	NSW	.249	.231	.961	45	.95
	VIC	.333	.232	.841	37	1.04
	QLD	.406	.235	.670	31	1.12
	SA	.110	.245	1.000	63	.85
	WA	.461	.245	.562	28	1.20
	TAS	.058	.305	1.000	87	.98
	NT	.143	.389	1.000	-1.04	1.32

E. AGREEMENT WITH POTENTIAL ENERGY SOURCES AND TECHNOLOGIES TO GENERATE FUTURE ENERGY NEEDS

Std. Error Mean Gender (binary) Std. Deviation Ν Mean 1463 5.6466 1.22901 Male .03213 T1 Support for hydrogen Female 1543 4.9916 1.19415 .03040 Male 1463 5.9952 1.12640 .02945 T2 Support for hydrogen 1.14759 Female 1543 5.7084 .02921 1158 6.0130 1.17258 .03446 Male T3 Support for hydrogen Female 1247 5.8749 1.08117 .03062

Table 65. Agreement with potential energy sources by gender (Group statistics)

Table 66. Agreement with potential energy sources - Independent Samples Test

		Levene's ⁻ for Equali [.] Variances	Test ty of	t-test f	t-test for Equality of Means						
						Sig. (2-	Mean	Std. Error	95% Cont Interval of Difference	fidence f the e	
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper	
T1 Support for bydrogen	Equal variances assumed	.632	.427	14.820	3004	.000	.65504	.04420	.56838	.74171	
hydrogen	Equal variances not assumed			14.809	2983.938	.000	.65504	.04423	.56831	.74177	
T2 Support for bydrogen	Equal variances assumed	11.818	.001	6.912	3004	.000	.28685	.04150	.20548	.36823	
nyarogon	Equal variances not assumed			6.915	3000.402	.000	.28685	.04148	.20552	.36819	
T3 Support for hydrogen	Equal variances assumed	.004	.951	3.004	2403	.003	.13805	.04596	.04793	.22817	
,	Equal variances not assumed			2.995	2346.778	.003	.13805	.04609	.04766	.22844	

Agreement with potential energy sources by State and Territory

Differences between states were tested with one-way ANOVAs, which revealed overall there were very few differences between the States, however there was some statistically significant differences in their level of agreement with coal (F(7,1505) = 2.627, p = .011), wind (F(7,1505) = 2.522, p = .014), solar PV (F(7,1505) = 2.577, p = .012), and nuclear energy (F(7,1505) = 3.780, p < .001). Tukey's HSD post hoc comparisons (Appendix 2) showed Western Australian residents differed from one or two states for each of these energy sources. Western Australian respondents expressed slightly stronger disagreement about the use of coal (M = 3.09, SD = 1.80) compared to residents in NSW (M = 3.73, SD = 1.88; Cohen's d = .348) and QLD (M = 3.74, SD = 1.89; Cohen's d = .352). Western Australians also disagreed more strongly about nuclear power (M = 3.46, SD = 1.95) compared to NSW (M = 4.16, SD = 1.94; Cohen's d = .360) and SA residents (M = 4.37, SD = 2.01; Cohen's d = .460). In addition, Western Australian residents were more in favour of wind (M = 6.12, SD = 1.18) than Queensland residents (M = 5.70, SD = 1.40; Cohen's d = .324), and Western Australians were more in favour of solar PV (M = 6.18, SD = 1.07) than NSW residents (M = 5.76, SD = 1.37; Cohen's d = .342). Although these results are statistically significant, the Cohen's d effect size results indicate these differences are small.

					95% Confidence Interval for Mean			
State/Terr	N	Maan	Std Day	Std Error	Lower	Upper	Min	Max
State/Terr.	N	wean	Sta. Dev	Sta. Error	Bound	Bound	IVIIN.	wax.
NSW	464	5.76	1.202	.056	5.65	5.87	1	7
VIC	389	5.78	1.178	.060	5.66	5.90	1	7
	292	5.71	1.198	.070	5.57	5.85	1	7
SA	145	5.96	1.060	.088	5.78	6.13	2	7
WA	148	5.97	.993	.082	5.80	6.13	3	7
TAS	33	5.76	1.032	.180	5.39	6.12	4	7
NT	14	6.14	1.099	.294	5.51	6.78	4	7
ACT	28	6.04	.838	.158	5.71	6.36	4	7
Total	1513	5.80	1.154	.030	5.75	5.86	1	7

Table 67. Agreement with Hydrogen to generate future energy needs by State & Territory - Descriptives

Table 68.Agreement with Coal to generate future energy needs by State and Territory – Descriptives

					95% Confidence Interval for Mean			
State/Terr.	N	Mean	Std. Dev.	Std. Error	Lower Bound	Upper Bound	Min.	Max.
NSW	464	3.73	1.878	.087	3.56	3.90	1	7
VIC	389	3.53	1.793	.091	3.36	3.71	1	7
QLD	292	3.74	1.894	.111	3.52	3.96	1	7
SA	145	3.39	1.823	.151	3.09	3.69	1	7
WA	148	3.09	1.797	.148	2.80	3.39	1	7
TAS	33	3.42	1.985	.346	2.72	4.13	1	7
NT	14	3.14	2.070	.553	1.95	4.34	1	7
ACT	28	3.75	2.154	.407	2.91	4.59	1	7
Total	1513	3.58	1.863	.048	3.48	3.67	1	7

Table 69. Agreement with Gas to generate future energy needs by State - Descriptives

					95% Confidence Interval for Mean			
State/Terr.	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
NSW	464	4.55	1.607	.075	4.40	4.69	1	7
VIC	389	4.54	1.506	.076	4.39	4.69	1	7
	292	4.45	1.560	.091	4.27	4.63	1	7
SA	145	4.73	1.445	.120	4.49	4.97	1	7
WA	148	4.44	1.476	.121	4.20	4.68	1	7
TAS	33	4.45	1.438	.250	3.94	4.96	1	6
NT	14	4.07	1.900	.508	2.97	5.17	1	7
ACT	28	4.61	1.729	.327	3.94	5.28	1	7
Total	1513	4.53	1.545	.040	4.45	4.61	1	7

Table 70. Agreement with Gas or coal with carbon capture and storage to generate future energy needs by State – Descriptives

					95% Confidence Interval for Mean			
State/Terr.	N	Mean	Std. Dev.	Std. Error	Lower Bound	Upper Bound	Min.	Max.
NSW	464	4.23	1.677	.078	4.08	4.38	1	7
VIC	389	4.19	1.657	.084	4.03	4.36	1	7
QLD	292	4.23	1.567	.092	4.05	4.41	1	7
SA	145	4.23	1.724	.143	3.95	4.52	1	7
WA	148	4.04	1.534	.126	3.79	4.29	1	7
TAS	33	4.21	1.576	.274	3.65	4.77	1	7
NT	14	3.93	1.439	.385	3.10	4.76	1	7
ACT	28	4.04	2.063	.390	3.24	4.84	1	7
Total	1513	4.19	1.643	.042	4.11	4.28	1	7

Table 71. Agreement with Wind to generate future energy needs by State - Descriptives

					95% Confidence Interval for Mean			
State/Terr.	N	Mean	Std. Dev.	Std. Error	Lower Bound	Upper Bound	Min.	Max.
NSW	464	5.76	1.366	.063	5.64	5.89	1	7
VIC	389	5.82	1.250	.063	5.69	5.94	1	7
QLD	292	5.70	1.397	.082	5.53	5.86	1	7
SA	145	5.97	1.121	.093	5.78	6.15	1	7
WA	148	6.12	1.177	.097	5.93	6.31	1	7
TAS	33	6.00	1.173	.204	5.58	6.42	3	7
NT	14	6.36	.842	.225	5.87	6.84	4	7
ACT	28	6.11	1.397	.264	5.57	6.65	2	7
Total	1513	5.84	1.301	.033	5.77	5.90	1	7

Table 72. Agreement with Solar PV to generate future energy needs by State - Descriptives

					95% Confidence Interval for Mean			
01-1-1			Std.		Lower	Upper	N4 1	N#
State/Tel	rr. N	Mean	Deviation	Std. Error	Bound	Bound	win.	Max.
NSW	464	5.79	1.262	.059	5.67	5.90	1	7
VIC	389	5.83	1.195	.061	5.71	5.95	1	7
QLD	292	5.87	1.270	.074	5.72	6.02	1	7
SA	145	5.94	1.168	.097	5.75	6.13	1	7
WA	148	6.18	1.067	.088	6.00	6.35	2	7
TAS	33	6.15	1.064	.185	5.77	6.53	4	7
NT	14	6.50	.855	.228	6.01	6.99	4	7
ACT	28	6.04	1.347	.254	5.51	6.56	2	7
Total	1513	5.89	1.219	.031	5.83	5.95	1	7

Table 73. Agreement with Oil (e.g. diesel/petrol for transport) to generate future energy needs by State – Descriptives

			Std.		95% Confidence Interval for Mean			
State/Terr.	N	Mean	Deviation	Std. Error	Lower Bound	Upper Bound	Min.	Max.
NSW	464	3.87	1.782	.083	3.70	4.03	1	7
VIC	389	3.81	1.716	.087	3.64	3.99	1	7
QLD	292	3.84	1.698	.099	3.64	4.03	1	7
SA	145	3.70	1.684	.140	3.43	3.98	1	7
WA	148	3.56	1.739	.143	3.28	3.84	1	7
TAS	33	3.97	1.630	.284	3.39	4.55	1	6
NT	14	3.43	1.828	.488	2.37	4.48	1	7
ACT	28	4.07	2.142	.405	3.24	4.90	1	7
Total	1513	3.80	1.739	.045	3.72	3.89	1	7

Table 74. Agreement with Nuclear (for power) to generate future energy needs by State - Descriptives

					95% Confidence Interval for Mean			
State/Terr.	N	Mean	Std. Dev.	Std. Error	Lower Bound	Upper Bound	Min.	Max.
NSW	464	4.16	1.943	.090	3.98	4.34	1	7
VIC	389	3.83	1.952	.099	3.64	4.02	1	7
QLD	292	3.80	1.988	.116	3.58	4.03	1	7
SA	145	4.37	2.013	.167	4.04	4.70	1	7
WA	148	3.46	1.950	.160	3.14	3.78	1	7
TAS	33	3.64	1.966	.342	2.94	4.33	1	7
NT	14	3.93	1.979	.529	2.79	5.07	1	7
ACT	28	4.43	2.201	.416	3.57	5.28	1	7
Total	1513	3.95	1.980	.051	3.85	4.05	1	7

Table 75. Agreement with Biomass to generate future energy needs by State - Descriptives

					95% Confidence Interval for Mean			
			Std.		Lower	Upper		
State/Terr.	Ν	Mean	Deviation	Std. Error	Bound	Bound	Min.	Max.
NSW	464	4.54	1.282	.060	4.42	4.65	1	7
VIC	389	4.45	1.103	.056	4.34	4.56	1	7
QLD	292	4.38	1.171	.069	4.25	4.51	1	7
SA	145	4.68	1.124	.093	4.49	4.86	1	7
WA	148	4.32	1.114	.092	4.14	4.51	2	7
TAS	33	4.73	1.353	.235	4.25	5.21	1	7
NT	14	4.64	1.447	.387	3.81	5.48	1	7
ACT	28	4.79	1.228	.232	4.31	5.26	2	7
Total	1513	4.49	1.190	.031	4.43	4.55	1	7

		Sum of	-16	Maan Crusera	_	0:
Energy source/technolog	y	Squares	ar	Mean Square	F	Sig.
	Between Groups	14.149	7	2.021	1.521	.156
Hydrogen	Within Groups	2000.550	1505	1.329		
	Total	2014.699	1512			
	Between Groups	63.337	7	9.048	2.627	.011
	Within Groups	5184.399	1505	3.445		
Coal	Total	5247.736	1512			
	Between Groups	12.319	7	1.760	.736	.641
	Within Groups	3598.680	1505	2.391		
Gas	Total	3610.999	1512			
	Between Groups	6.418	7	.917	.338	.936
Gas or coal with carbon	Within Groups	4077.064	1505	2.709		
capture and storage	Total	4083.482	1512			
	Between Groups	29.653	7	4.236	2.522	.014
	Within Groups	2528.368	1505	1.680		
Wind	Total	2558.021	1512			
	Between Groups	26.598	7	3.800	2.577	.012
	Within Groups	2219.076	1505	1.474		
Solar PV	Total	2245.673	1512			
	Between Groups	17.311	7	2.473	.817	.573
Oil (e.g. diesel/petrol for	Within Groups	4556.780	1505	3.028		
transport)	Total	4574.091	1512			
	Between Groups	102.401	7	14.629	3.780	.000
	Within Groups	5824.680	1505	3.870		
Nuclear (for power)	Total	5927.081	1512			
	Between Groups	18.775	7	2.682	1.901	.066
	Within Groups	2123.224	1505	1.411		
Biomass	Total	2141.999	1512			

Table 76 Agreement with potential energy sources by State - ANOVA

Post Hoc Tests

Table 77. Multiple comparisons between agreement with hydrogen by State/Territory (Post Hoc Tests) – (Tukey HSD)

	Dependent	variable – Hydrog	en			
(I) State	(J)	Mean Difference			95% Confidend	ce Interval
/Terr.	Sta/Terr	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	VIC	023	.079	1.000	26	.22
	QLD	.046	.086	.999	22	.31
	SA	200	.110	.604	53	.13
	WA	208	.109	.546	54	.12
	TAS	.001	.208	1.000	63	.63
	NT	384	.313	.923	-1.33	.57
NSW	ACT	277	.224	.921	96	.40
	NSW	.023	.079	1.000	22	.26
	QLD	.069	.089	.994	20	.34
	SA	177	.112	.763	52	.16
	WA	185	.111	.714	52	.15
	TAS	.024	.209	1.000	61	.66
	NT	361	.314	.945	-1.31	.59
VIC	ACT	254	.226	.951	94	.43
	NSW	046	.086	.999	31	.22
	VIC	069	.089	.994	34	.20
	SA	246	.117	.414	60	.11
	WA	254	.116	.363	61	.10
	TAS	045	.212	1.000	69	.60
	NT	431	.315	.873	-1.39	.53
QLD	ACT	323	.228	.849	-1.02	.37

	(J)	Mean			95% Confide	nce Interval
(I) State/Terr	State/Terr	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	NSW	.200	.110	.604	13	.53
	VIC	.177	.112	.763	16	.52
	QLD	.246	.117	.414	11	.60
	WA	008	.135	1.000	42	.40
	TAS	.201	.222	.986	47	.88
	NT	184	.323	.999	-1.16	.80
SA	ACT	077	.238	1.000	80	.65
	NSW	.208	.109	.546	12	.54
	VIC	.185	.111	.714	15	.52
	QLD	.254	.116	.363	10	.61
	SA	.008	.135	1.000	40	.42
	TAS	.209	.222	.982	47	.88
	NT	177	.322	.999	-1.16	.80
WA	ACT	069	.238	1.000	79	.65
	NSW	001	.208	1.000	63	.63
	VIC	024	.209	1.000	66	.61
	QLD	.045	.212	1.000	60	.69
	SA	201	.222	.986	88	.47
	WA	209	.222	.982	88	.47
	NT	385	.368	.967	-1.50	.73
TAS	ACT	278	.296	.982	-1.18	.62
	NSW	.384	.313	.923	57	1.33
	VIC	.361	.314	.945	59	1.31
	QLD	.431	.315	.873	53	1.39
	SA	.184	.323	.999	80	1.16
	WA	.177	.322	.999	80	1.16
	TAS	.385	.368	.967	73	1.50
NT	ACT	.107	.377	1.000	-1.04	1.25
	NSW	.277	.224	.921	40	.96
	VIC	.254	.226	.951	43	.94
	QLD	.323	.228	.849	37	1.02
	SA	.077	.238	1.000	65	.80
	WA	.069	.238	1.000	65	.79
ACT	TAS	.278	.296	.982	62	1.18
	NT	107	.377	1.000	-1.25	1.04

			Dependent var	iable – Coal		
	(J)				95% Confid	ence Interval
	State/	Mean Difference				
(I) State /Terr	Terr	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	VIC	.196	.128	.788	19	.58
	QLD	009	.139	1.000	43	.41
	SA	.344	.177	.516	19	.88
	WA	.636*	.175	.007	.10	1.17
	TAS	.306	.334	.985	71	1.32
	NT	.588	.503	.941	94	2.12
NSW	ACT	019	.361	1.000	-1.12	1.08
	NSW	196	.128	.788	58	.19
	QLD	205	.144	.845	64	.23
	SA	.148	.181	.992	40	.70
	WA	.440	.179	.216	10	.98
	TAS	.110	.337	1.000	91	1.13
	NT	.392	.505	.994	-1.14	1.92
VIC	ACT	215	.363	.999	-1.32	.89
	NSW	.009	.139	1.000	41	.43
	VIC	.205	.144	.845	23	.64
	SA	.354	.189	.569	22	.93
	WA	.645*	.187	.014	.08	1.21
	TAS	.315	.341	.984	72	1.35
	NT	.597	.508	.939	94	2.14
QLD	ACT	010	.367	1.000	-1.12	1.10
	NSW	344	.177	.516	88	.19
	VIC	148	.181	.992	70	.40
	QLD	354	.189	.569	93	.22
	WA	.292	.217	.882	37	.95
	TAS	038	.358	1.000	-1.12	1.05
	NT	.243	.519	1.000	-1.33	1.82
SA	ACT	364	.383	.981	-1.53	.80
	NSW	636*	.175	.007	-1.17	10
	VIC	440	.179	.216	98	.10
	QLD	645 [*]	.187	.014	-1.21	08
	SA	292	.217	.882	95	.37
	TAS	330	.357	.984	-1.41	.75
	NT	048	.519	1.000	-1.62	1.53
WA	ACT	655	.382	.678	-1.82	.51
	NSW	306	.334	.985	-1.32	.71
	VIC	110	.337	1.000	-1.13	.91
	QLD	315	.341	.984	-1.35	.72
	SA	.038	.358	1.000	-1.05	1.12
	WA	.330	.357	.984	75	1.41
	NT	.281	.592	1.000	-1.52	2.08
TAS	ACT	326	.477	.997	-1.77	1.12
	NSW	588	.503	.941	-2.12	.94
	VIC	392	.505	.994	-1.92	1.14
	QLD	597	.508	.939	-2.14	.94
	SA	243	.519	1.000	-1.82	1.33
	WA	.048	.519	1.000	-1.53	1.62
	TAS	281	.592	1.000	-2.08	1.52
NT	ACT	607	.608	.975	-2.45	1.24

Table 78. Multiple comparisons between agreement with Coal by State (Post Hoc Tests) – (Tukey HSD)

		Mean Difference			95% Confidence Interval		
(I) State	(J) State -	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound	
	NSW	.019	.361	1.000	-1.08	1.12	
	VIC	.215	.363	.999	89	1.32	
	QLD	.010	.367	1.000	-1.10	1.12	
	SA	.364	.383	.981	80	1.53	
	WA	.655	.382	.678	51	1.82	
	TAS	.326	.477	.997	-1.12	1.77	
ACT	NT	.607	.608	.975	-1.24	2.45	

Table 79. Multiple comparisons between agreement with Gas by State (Post Hoc Tests) – (Tukey HSD)

	Depende	nt variable – Coal				
		Mean Difference			95% Confide	nce Interval
(I) State	(J) State	-(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	VIC	.003	.106	1.000	32	.33
	QLD	.093	.116	.993	26	.44
	SA	186	.147	.912	63	.26
	WA	.106	.146	.996	34	.55
	TAS	.091	.279	1.000	75	.94
	NT	.474	.419	.950	80	1.75
NSW	ACT	062	.301	1.000	98	.85
	NSW	003	.106	1.000	33	.32
	QLD	.090	.120	.995	27	.45
	SA	189	.150	.915	65	.27
	WA	.103	.149	.997	35	.56
	TAS	.088	.280	1.000	76	.94
	NT	.471	.421	.953	81	1.75
VIC	ACT	065	.303	1.000	98	.85
	NSW	093	.116	.993	44	.26
	VIC	090	.120	.995	45	.27
	SA	279	.157	.637	76	.20
	WA	.013	.156	1.000	46	.49
	TAS	002	.284	1.000	86	.86
	NT	.381	.423	.986	90	1.66
QLD	ACT	155	.306	1.000	-1.08	.77
	NSW	.186	.147	.912	26	.63
	VIC	.189	.150	.915	27	.65
	QLD	.279	.157	.637	20	.76
	WA	.292	.181	.741	26	.84
	TAS	.276	.298	.983	63	1.18
	NT	.660	.433	.794	65	1.97
SA	ACT	.124	.319	1.000	84	1.09
	NSW	106	.146	.996	55	.34
	VIC	103	.149	.997	56	.35
	QLD	013	.156	1.000	49	.46
	SA	292	.181	.741	84	.26
	TAS	015	.298	1.000	92	.89
	NT	.368	.432	.990	94	1.68
WA	ACT	168	.319	1.000	-1.14	.80

	Dependen	it variable – Coal				
	(J) State/	Mean Difference			95% Confid	ence Interval
(I) State/Terr	Terr	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	NSW	091	.279	1.000	94	.75
	VIC	088	.280	1.000	94	.76
	QLD	.002	.284	1.000	86	.86
	SA	276	.298	.983	-1.18	.63
	WA	.015	.298	1.000	89	.92
	NT	.383	.493	.994	-1.11	1.88
TAS	ACT	153	.397	1.000	-1.36	1.05
	NSW	474	.419	.950	-1.75	.80
	VIC	471	.421	.953	-1.75	.81
	QLD	381	.423	.986	-1.66	.90
	SA	660	.433	.794	-1.97	.65
	WA	368	.432	.990	-1.68	.94
	TAS	383	.493	.994	-1.88	1.11
NT	ACT	536	.506	.965	-2.07	1.00
	NSW	.062	.301	1.000	85	.98
	VIC	.065	.303	1.000	85	.98
	QLD	.155	.306	1.000	77	1.08
	SA	124	.319	1.000	-1.09	.84
	WA	.168	.319	1.000	80	1.14
	TAS	.153	.397	1.000	-1.05	1.36
ACT	NT	.536	.506	.965	-1.00	2.07

Dependent variable – Gas or coal with carbon capture and storage						
	M	ean Differ <u>ence</u>			95% Confider	nce Interval
(I) State	(J) State -(I-	J)	Std. Error	Sig.	Lower Bound	Upper Bound
	VIC	.038	.113	1.000	31	.38
	QLD	004	.123	1.000	38	.37
	SA	006	.157	1.000	48	.47
	WA	.188	.155	.929	28	.66
	TAS	.016	.297	1.000	88	.92
	NT	.300	.446	.998	-1.06	1.66
NSW	ACT	.193	.320	.999	78	1.16
	NSW	038	.113	1.000	38	.31
	QLD	043	.127	1.000	43	.34
	SA	044	.160	1.000	53	.44
	WA	.150	.159	.982	33	.63
	TAS	022	.298	1.000	93	.88
	NT	.262	.448	.999	-1.10	1.62
VIC	ACT	.155	.322	1.000	82	1.13
	NSW	.004	.123	1.000	37	.38
	VIC	.043	.127	1.000	34	.43
	SA	002	.167	1.000	51	.51
	WA	.192	.166	.943	31	.70
	TAS	.021	.302	1.000	90	.94
	NT	.304	.450	.998	-1.06	1.67
QLD	ACT	.197	.326	.999	79	1.19
	NSW	.006	.157	1.000	47	.48
	VIC	.044	.160	1.000	44	.53
	QLD	.002	.167	1.000	51	.51
	WA	.194	.192	.973	39	.78
	TAS	.022	.317	1.000	94	.99
	NT	.306	.461	.998	-1.09	1.70
SA	ACT	.199	.340	.999	83	1.23
	NSW	188	.155	.929	66	.28
	VIC	150	.159	.982	63	.33
	QLD	192	.166	.943	70	.31
	SA	194	.192	.973	78	.39
	TAS	172	.317	.999	-1.13	.79
	NT	.112	.460	1.000	-1.28	1.51
WA	ACT	.005	.339	1.000	-1.02	1.03
	NSW	016	.297	1.000	92	.88
	VIC	.022	.298	1.000	88	.93
	QLD	021	.302	1.000	94	.90
	SA	022	.317	1.000	99	.94
	WA	.172	.317	.999	79	1.13
	NT	.284	.525	.999	-1.31	1.88
TAS	ACT	.176	.423	1.000	-1.11	1.46

Table 80. Multiple comparisons between agreement with Gas or coal with carbon capture and storage by State (Post Hoc Tests) – (Tukey HSD)

		Mean Difference			95% Confider	nce Interval
(I) State	(J) State	-(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	NSW	300	.446	.998	-1.66	1.06
	VIC	262	.448	.999	-1.62	1.10
	QLD	304	.450	.998	-1.67	1.06
	SA	306	.461	.998	-1.70	1.09
	WA	112	.460	1.000	-1.51	1.28
	TAS	284	.525	.999	-1.88	1.31
NT	ACT	107	.539	1.000	-1.74	1.53
	NSW	193	.320	.999	-1.16	.78
	VIC	155	.322	1.000	-1.13	.82
	QLD	197	.326	.999	-1.19	.79
	SA	199	.340	.999	-1.23	.83
	WA	005	.339	1.000	-1.03	1.02
	TAS	176	.423	1.000	-1.46	1.11
ACT	NT	.107	.539	1.000	-1.53	1.74

	Depender	nt variable – Wind				
		Mean Difference			95% Confide	nce Interval
(I) State	(J) State -	·(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	VIC	055	.089	.999	32	.22
	QLD	.068	.097	.997	23	.36
	SA	203	.123	.724	58	.17
	WA	359	.122	.067	73	.01
	TAS	237	.234	.972	95	.47
	NT	594	.352	.694	-1.66	.47
NSW	ACT	344	.252	.873	-1.11	.42
	NSW	.055	.089	.999	22	.32
	QLD	.122	.100	.927	18	.43
	SA	148	.126	.939	53	.23
	WA	304	.125	.228	68	.08
	TAS	183	.235	.994	90	.53
	NT	540	.353	.791	-1.61	.53
VIC	ACT	290	.254	.947	-1.06	.48
	NSW	068	.097	.997	36	.23
	VIC	122	.100	.927	43	.18
	SA	270	.132	.446	67	.13
	WA	426 [*]	.131	.025	82	03
	TAS	305	.238	.906	-1.03	.42
	NT	662	.355	.574	-1.74	.41
QLD	ACT	412	.256	.747	-1.19	.37
	NSW	.203	.123	.724	17	.58
	VIC	.148	.126	.939	23	.53
	QLD	.270	.132	.446	13	.67
	WA	156	.151	.970	62	.30
	TAS	034	.250	1.000	79	.72
	NT	392	.363	.961	-1.49	.71
SA	ACT	142	.268	1.000	95	.67
	NSW	.359	.122	.067	01	.73
	VIC	.304	.125	.228	08	.68
	QLD	.426*	.131	.025	.03	.82
	SA	.156	.151	.970	30	.62
	TAS	.122	.250	1.000	64	.88
	NT	236	.362	.998	-1.34	.86
WA	ACT	.014	.267	1.000	80	.83
	NSW	.237	.234	.972	47	.95
	VIC	.183	.235	.994	53	.90
	QLD	.305	.238	.906	42	1.03
	SA	.034	.250	1.000	72	.79
	WA	122	.250	1.000	88	.64
	NT	357	.413	.989	-1.61	.90
TAS	ACT	107	.333	1.000	-1.12	.90
	NSW	.594	.352	.694	47	1.66
	VIC	.540	.353	.791	53	1.61
	QLD	.662	.355	.574	41	1.74
	SA	.392	.363	.961	/1	1.49
	VVA	.236	.362	.998	86	1.34
NT	TAS	.357	.413	.989	90	1.61
NI	ACT	.250	.424	.999	-1.04	1.54

Table 81. Multiple comparisons between agreement with Wind by State (Post Hoc Tests) – (Tukey HSD)

		Mean Difference			95% Confide	nce Interval
(I) State	(J) State -	·(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	NSW	.344	.252	.873	42	1.11
	VIC	.290	.254	.947	48	1.06
	QLD	.412	.256	.747	37	1.19
	SA	.142	.268	1.000	67	.95
	WA	014	.267	1.000	83	.80
	TAS	.107	.333	1.000	90	1.12
ACT	NT	250	.424	.999	-1.54	1.04

Table 82. Multiple comparisons between agreement with Solar PV by State (Post Hoc Tests) – (Tukey HSD)

Dependent variable – Solar PV						
	(J) State/ Mean Difference (I-				95% Confide	nce Interval
(I) State/Terr	Terr	J)	Std. Error	Sig.	Lower Bound	Upper Bound
	VIC	044	.083	1.000	30	.21
	QLD	081	.091	.987	36	.19
	SA	149	.116	.902	50	.20
	WA	387*	.115	.017	73	04
	TAS	363	.219	.714	-1.03	.30
	NT	711	.329	.377	-1.71	.29
NSW	ACT	247	.236	.967	96	.47
	NSW	.044	.083	1.000	21	.30
	QLD	037	.094	1.000	32	.25
	SA	105	.118	.987	46	.25
	WA	343	.117	.069	70	.01
	TAS	319	.220	.835	99	.35
	NT	667	.330	.469	-1.67	.34
VIC	ACT	203	.238	.990	92	.52
	NSW	.081	.091	.987	19	.36
	VIC	.037	.094	1.000	25	.32
	SA	068	.123	.999	44	.31
	WA	306	.123	.198	68	.07
	TAS	282	.223	.912	96	.40
	NT	630	.332	.553	-1.64	.38
QLD	ACT	166	.240	.997	89	.56
	NSW	.149	.116	.902	20	.50
	VIC	.105	.118	.987	25	.46
	QLD	.068	.123	.999	31	.44
	WA	238	.142	.703	67	.19
	TAS	214	.234	.985	92	.50
	NT	562	.340	.717	-1.59	.47
SA	ACT	098	.251	1.000	86	.66
	NSW	.387*	.115	.017	.04	.73
	VIC	.343	.117	.069	01	.70
	QLD	.306	.123	.198	07	.68
	SA	.238	.142	.703	19	.67
	TAS	.024	.234	1.000	69	.73
	NT	324	.340	.980	-1.35	.71
WA	ACT	.140	.250	.999	62	.90

	(J) State/	Mean Difference			95% Confide	nce Interval
(I) State/Terr	Terr	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	NSW	.363	.219	.714	30	1.03
	VIC	.319	.220	.835	35	.99
	QLD	.282	.223	.912	40	.96
	SA	.214	.234	.985	50	.92
	WA	024	.234	1.000	73	.69
	NT	348	.387	.986	-1.52	.83
TAS	ACT	.116	.312	1.000	83	1.06
	NSW	.711	.329	.377	29	1.71
	VIC	.667	.330	.469	34	1.67
	QLD	.630	.332	.553	38	1.64
	SA	.562	.340	.717	47	1.59
	WA	.324	.340	.980	71	1.35
	TAS	.348	.387	.986	83	1.52
NT	ACT	.464	.397	.941	74	1.67
	NSW	.247	.236	.967	47	.96
	VIC	.203	.238	.990	52	.92
	QLD	.166	.240	.997	56	.89
	SA	.098	.251	1.000	66	.86
	WA	140	.250	.999	90	.62
	TAS	116	.312	1.000	-1.06	.83
ACT	NT	464	.397	.941	-1.67	.74

Dependent variable – Oil (e.g. diesel/petrol for transport)						
		Mean Difference			95% Confid	ence Interval
(I) State	(J) State -	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	VIC	.051	.120	1.000	31	.41
	QLD	.027	.130	1.000	37	.42
	SA	.163	.166	.977	34	.67
	WA	.306	.164	.579	19	.80
	TAS	103	.313	1.000	-1.05	.85
	NT	.438	.472	.983	99	1.87
NSW	ACT	205	.339	.999	-1.23	.82
	NSW	051	.120	1.000	41	.31
	QLD	024	.135	1.000	43	.38
	SA	.111	.169	.998	40	.63
	WA	.254	.168	.801	26	.76
	TAS	155	.315	1.000	-1.11	.80
	NT	.386	.473	.992	-1.05	1.82
VIC	ACT	257	.340	.995	-1.29	.78
	NSW	027	.130	1.000	42	.37
	VIC	.024	.135	1.000	38	.43
	SA	.136	.177	.995	40	.67
	WA	.278	.176	.760	25	.81
	TAS	131	.320	1.000	-1.10	.84
	NT	.410	.476	.989	-1.03	1.86
QLD	ACT	232	.344	.998	-1.28	.81
	NSW	163	.166	.977	67	.34
	VIC	111	.169	.998	63	.40
	QLD	136	.177	.995	67	.40
	WA	.143	.203	.997	47	.76
	TAS	266	.336	.993	-1.28	.75
	NT	.275	.487	.999	-1.20	1.75
SA	ACT	368	.359	.971	-1.46	.72
	NSW	306	.164	.579	80	.19
	VIC	254	.168	.801	76	.26
	QLD	278	.176	.760	81	.25
	SA	143	.203	.997	76	.47
	TAS	409	.335	.926	-1.43	.61
	NT	.132	.487	1.000	-1.34	1.61
WA	ACT	511	.359	.846	-1.60	.58

Table 83. Multiple comparisons between agreement with Oil (e.g. diesel/petrol for transport) by State (Post Hoc Tests) – (Tukey HSD)

	(J) State/	Mean Difference			95% Confid	ence Interval
(I) State/Terr	Terr	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	NSW	.103	.313	1.000	85	1.05
	VIC	.155	.315	1.000	80	1.11
	QLD	.131	.320	1.000	84	1.10
	SA	.266	.336	.993	75	1.28
	WA	.409	.335	.926	61	1.43
	NT	.541	.555	.978	-1.14	2.23
TAS	ACT	102	.447	1.000	-1.46	1.26
	NSW	438	.472	.983	-1.87	.99
	VIC	386	.473	.992	-1.82	1.05
	QLD	410	.476	.989	-1.86	1.03
	SA	275	.487	.999	-1.75	1.20
	WA	132	.487	1.000	-1.61	1.34
	TAS	541	.555	.978	-2.23	1.14
NT	ACT	643	.570	.951	-2.37	1.09
	NSW	.205	.339	.999	82	1.23
	VIC	.257	.340	.995	78	1.29
	QLD	.232	.344	.998	81	1.28
	SA	.368	.359	.971	72	1.46
	WA	.511	.359	.846	58	1.60
	TAS	.102	.447	1.000	-1.26	1.46
ACT	NT	.643	.570	.951	-1.09	2.37
Table 84. Multip	le comparisons bet	veen agreemen	t with Nuclear	(for power) by	State (Post Hoc	Tests) – (Tukey
------------------	--------------------	---------------	----------------	----------------	-----------------	-----------------
HSD)						

	Dependent variable – Nuclear (for power)									
	(J) State/	Mean Difference			95% Confid	ence Interval				
(I) State /Terr	Terr	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound				
	VIC	.329	.135	.226	08	.74				
	QLD	.355	.147	.235	09	.80				
	SA	206	.187	.957	77	.36				
	WA	.700*	.186	.004	.14	1.26				
	TAS	.523	.354	.820	55	1.60				
	NT	.231	.534	1.000	-1.39	1.85				
NSW	ACT	269	.383	.997	-1.43	.89				
	NSW	329	.135	.226	74	.08				
	QLD	.026	.152	1.000	44	.49				
	SA	535	.191	.097	-1.12	.05				
	WA	.371	.190	.515	21	.95				
	TAS	.194	.357	.999	89	1.28				
	NT	098	.535	1.000	-1.72	1.53				
VIC	ACT	598	.385	.778	-1.77	.57				
	NSW	355	.147	.235	80	.09				
	VIC	026	.152	1.000	49	.44				
	SA	561	.200	.094	-1.17	.05				
	WA	.345	.199	.661	26	.95				
	TAS	.168	.361	1.000	93	1.27				
	NT	124	.538	1.000	-1.76	1.51				
QLD	ACT	624	.389	.749	-1.81	.56				
	NSW	.206	.187	.957	36	.77				
	VIC	.535	.191	.097	05	1.12				
	QLD	.561	.200	.094	05	1.17				
	WA	.906*	.230	.002	.21	1.60				
	TAS	.729	.379	.536	42	1.88				
	NT	.437	.551	.993	-1.23	2.11				
SA	ACT	063	.406	1.000	-1.30	1.17				
	NSW	700 [*]	.186	.004	-1.26	14				
	VIC	371	.190	.515	95	.21				
	QLD	345	.199	.661	95	.26				
	SA	906*	.230	.002	-1.60	21				
	TAS	177	.379	1.000	-1.33	.97				
	NT	469	.550	.990	-2.14	1.20				
WA	ACT	969	.405	.247	-2.20	.26				
	NSW	523	.354	.820	-1.60	.55				
	VIC	194	.357	.999	-1.28	.89				
	QLD	168	.361	1.000	-1.27	.93				
	SA	729	.379	.536	-1.88	.42				
	WA	.177	.379	1.000	97	1.33				
	NT	292	.627	1.000	-2.20	1.61				
TAS	ACT	792	.505	.770	-2.33	.74				

	(J) State/	Mean Difference			95% Confid	ence Interval
(I) State/Terr	Terr	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	NSW	231	.534	1.000	-1.85	1.39
	VIC	.098	.535	1.000	-1.53	1.72
	QLD	.124	.538	1.000	-1.51	1.76
	SA	437	.551	.993	-2.11	1.23
	WA	.469	.550	.990	-1.20	2.14
	TAS	.292	.627	1.000	-1.61	2.20
NT	ACT	500	.644	.994	-2.45	1.45
	NSW	.269	.383	.997	89	1.43
	VIC	.598	.385	.778	57	1.77
	QLD	.624	.389	.749	56	1.81
	SA	.063	.406	1.000	-1.17	1.30
	WA	.969	.405	.247	26	2.20
	TAS	.792	.505	.770	74	2.33
ACT	NT	.500	.644	.994	-1.45	2.45

	Dependen	t variable – Biomas	SS			
	(J) State/	Mean Difference			95% Confide	ence Interval
(I) State/Terr	Terr	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	VIC	.084	.082	.970	16	.33
	QLD	.157	.089	.645	11	.43
	SA	139	.113	.922	48	.20
	WA	.212	.112	.556	13	.55
	TAS	191	.214	.987	84	.46
	NT	106	.322	1.000	-1.08	.87
NSW	ACT	249	.231	.961	95	.45
	NSW	084	.082	.970	33	.16
	QLD	.072	.092	.994	21	.35
	SA	223	.116	.528	57	.13
	WA	.128	.115	.953	22	.48
	TAS	275	.215	.908	93	.38
	NT	190	.323	.999	-1.17	.79
VIC	ACT	333	.232	.841	-1.04	.37
	NSW	157	.089	.645	43	.11
	VIC	072	.092	.994	35	.21
	SA	296	.121	.218	66	.07
	WA	.056	.120	1.000	31	.42
	TAS	347	.218	.756	-1.01	.31
	NT	263	.325	.993	-1.25	.72
QLD	ACT	406	.235	.670	-1.12	.31
	NSW	.139	.113	.922	20	.48
	VIC	.223	.116	.528	13	.57
	QLD	.296	.121	.218	07	.66
	WA	.352	.139	.182	07	.77
	TAS	051	.229	1.000	75	.64
	NT	.033	.332	1.000	98	1.04
SA	ACT	110	.245	1.000	85	.63
	NSW	212	.112	.556	55	.13
	VIC	128	.115	.953	48	.22
	QLD	056	.120	1.000	42	.31
	SA	352	.139	.182	77	.07
	TAS	403	.229	.646	-1.10	.29
	NT	319	.332	.980	-1.33	.69
WA	ACT	461	.245	.562	-1.20	.28
	NSW	.191	.214	.987	46	.84
	VIC	.275	.215	.908	38	.93
	QLD	.347	.218	.756	31	1.01
	SA	.051	.229	1.000	64	.75
	WA	.403	.229	.646	29	1.10
	NT	.084	.379	1.000	-1.07	1.23
TAS	ACT	058	.305	1.000	98	.87

Table 85. Multiple comparisons between agreement with Biomass by State (Post Hoc Tests) – (Tukey HSD)

	(J) State/	Mean Difference			95% Confide	ence Interval
(I) State/Terr	Terr	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	NSW	.106	.322	1.000	87	1.08
	VIC	.190	.323	.999	79	1.17
	QLD	.263	.325	.993	72	1.25
	SA	033	.332	1.000	-1.04	.98
	WA	.319	.332	.980	69	1.33
	TAS	084	.379	1.000	-1.23	1.07
NT	ACT	143	.389	1.000	-1.32	1.04
	NSW	.249	.231	.961	45	.95
	VIC	.333	.232	.841	37	1.04
	QLD	.406	.235	.670	31	1.12
	SA	.110	.245	1.000	63	.85
	WA	.461	.245	.562	28	1.20
	TAS	.058	.305	1.000	87	.98
ACT	NT	.143	.389	1.000	-1.04	1.32

						95% Confi Interval fo	dence r Mean		
				Std.	Std.	Lower	Upper		
		N	Mean	Deviation	Error	Bound	Bound	Minimum	Maximum
Hydrogen	Liberal/National	613	5.82	1.090	.044	5.73	5.91	1	7
	Labor	497	5.96	1.000	.045	5.87	6.05	1	7
	Greens	194	5.80	1.321	.095	5.62	5.99	1	7
	Other	209	5.38	1.396	.097	5.19	5.57	1	7
	Total	1513	5.80	1.154	.030	5.75	5.86	1	7
Coal	Liberal/National	613	4.19	1.674	.068	4.06	4.32	1	7
	Labor	497	3.19	1.831	.082	3.03	3.35	1	7
	Greens	194	2.52	1.816	.130	2.26	2.78	1	7
	Other	209	3.67	1.848	.128	3.41	3.92	1	7
	Total	1513	3.58	1.863	.048	3.48	3.67	1	7
Gas	Liberal/National	613	4.98	1.304	.053	4.88	5.09	1	7
	Labor	497	4.37	1.576	.071	4.23	4.51	1	7
	Greens	194	3.64	1.671	.120	3.40	3.88	1	7
	Other	209	4.41	1.558	.108	4.20	4.62	1	7
	Total	1513	4.53	1.545	.040	4.45	4.61	1	7
Gas or coal with	Liberal/National	613	4.63	1.459	.059	4.52	4.75	1	7
carbon capture and	Labor	497	4.06	1.681	.075	3.91	4.21	1	7
storage	Greens	194	3.42	1.732	.124	3.17	3.66	1	7
	Other	209	3.95	1.615	.112	3.73	4.17	1	7
	Total	1513	4.19	1.643	.042	4.11	4.28	1	7
Wind	Liberal/National	613	5.64	1.351	.055	5.53	5.75	1	7
	Labor	497	6.06	1.100	.049	5.97	6.16	1	7
	Greens	194	6.29	1.028	.074	6.14	6.43	1	7
	Other	209	5.44	1.574	.109	5.23	5.66	1	7
	Total	1513	5.84	1.301	.033	5.77	5.90	1	7
Solar PV	Liberal/National	613	5.75	1.201	.048	5.66	5.85	1	7
	Labor	497	6.06	1.122	.050	5.97	6.16	1	7
	Greens	194	6.18	1.077	.077	6.02	6.33	2	7
	Other	209	5.59	1.478	.102	5.39	5.79	1	7
	Total	1513	5.89	1.219	.031	5.83	5.95	1	7
Oil (e.g.	Liberal/National	613	4.27	1.586	.064	4.15	4.40	1	7
diesel/petrol for	Labor	497	3.60	1.707	.077	3.45	3.75	1	7
transport)	Greens	194	2.86	1.768	.127	2.61	3.11	1	7
	Other	209	3.78	1.778	.123	3.54	4.03	1	7
	Total	1513	3.80	1.739	.045	3.72	3.89	1	7

Table 86. Agreement with potential future energy sources by political party preference – Descriptives

					95% Confidence Interval for Mean		dence r Mean		
		N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Nuclear (for power)	Liberal/National	613	4.53	1.834	.074	4.38	4.68	1	7
	Labor	497	3.62	1.948	.087	3.45	3.79	1	7
	Greens	194	3.27	1.929	.139	3.00	3.55	1	7
	Other	209	3.65	2.080	.144	3.37	3.93	1	7
	Total	1513	3.95	1.980	.051	3.85	4.05	1	7
Biomass	Liberal/National	613	4.58	1.145	.046	4.49	4.67	1	7
	Labor	497	4.52	1.200	.054	4.42	4.63	1	7
	Greens	194	4.46	1.209	.087	4.29	4.64	1	7
	Other	209	4.14	1.224	.085	3.98	4.31	1	7
	Total	1513	4.49	1.190	.031	4.43	4.55	1	7

		Sum of		Mean		
	-	Squares	df	Square	F	Sig.
Hydrogen	Between Groups	49.590	3	16.530	12.693	.000
	Within Groups	1965.109	1509	1.302		
	Total	2014.699	1512			
Coal	Between Groups	523.873	3	174.624	55.782	.000
	Within Groups	4723.863	1509	3.130		
	Total	5247.736	1512			
Gas	Between Groups	295.490	3	98.497	44.829	.000
	Within Groups	3315.509	1509	2.197		
	Total	3610.999	1512			
Gas or coal with carbon capture and storage	Between Groups	257.544	3	85.848	33.860	.000
	Within Groups	3825.937	1509	2.535		
	Total	4083.482	1512			
Wind	Between Groups	121.305	3	40.435	25.040	.000
	Within Groups	2436.717	1509	1.615		
	Total	2558.021	1512			
Solar PV	Between Groups	60.952	3	20.317	14.033	.000
	Within Groups	2184.721	1509	1.448		
	Total	2245.673	1512			
Oil (e.g. diesel/petrol for transport)	Between Groups	328.462	3	109.487	38.914	.000
	Within Groups	4245.630	1509	2.814		
	Total	4574.091	1512			
Nuclear (for power)	Between Groups	367.481	3	122.494	33.248	.000
	Within Groups	5559.600	1509	3.684		
	Total	5927.081	1512			
Biomass	Between Groups	31.106	3	10.369	7.412	.000
	Within Groups	2110.893	1509	1.399		
	Total	2141.999	1512			

Table 87. Agreement with potential future energy sources by political party preference – ANOVA

Table 88. Agreement with potential future energy sources by political party preference (Post Hoc Test) – Tukey HSD

		(J) If there would be			95% <u></u>		
	(I) If there would be	federal elections on				Confid	ence
	federal elections on next	next Sunday, which	Mean			Interva	I
Dependent	Sunday, which party	party would you vote	Difference (I-	Std.		Lower	Upper
Variable	would you vote for	for	J)	Error	Sig.	Bound	Bound
Hydrogen	Liberal/National	Labor	143	.069	.162	32	.03
		Greens	.015	.094	.999	23	.26
		Other	.436*	.091	.000	.20	.67
	Labor	Liberal/National	.143	.069	.162	03	.32
		Greens	.158	.097	.361	09	.41
		Other	.579 [*]	.094	.000	.34	.82
	Greens	Liberal/National	015	.094	.999	26	.23
		Labor	158	.097	.361	41	.09
		Other	.421 [*]	.114	.001	.13	.71
	Other	Liberal/National	436*	.091	.000	67	20
		Labor	579 [*]	.094	.000	82	34
		Greens	421*	.114	.001	71	13
Coal	Liberal/National	Labor	1.002*	.107	.000	.73	1.28
		Greens	1.670*	.146	.000	1.30	2.05
		Other	.526 [*]	.142	.001	.16	.89
	Labor	Liberal/National	-1.002 [*]	.107	.000	-1.28	73
		Greens	.669*	.150	.000	.28	1.05
		Other	476 [*]	.146	.006	85	10
	Greens	Liberal/National	-1.670 [*]	.146	.000	-2.05	-1.30
		Labor	669*	.150	.000	-1.05	28
		Other	-1.144 [*]	.176	.000	-1.60	69
	Other	Liberal/National	526 [*]	.142	.001	89	16
		Labor	.476 [*]	.146	.006	.10	.85
		Greens	1.144*	.176	.000	.69	1.60
Gas	Liberal/National	Labor	.616 [*]	.089	.000	.39	.85
		Greens	1.343 [*]	.122	.000	1.03	1.66
		Other	.571 [*]	.119	.000	.27	.88
	Labor	Liberal/National	616 [*]	.089	.000	85	39
		Greens	.727*	.125	.000	.40	1.05
		Other	045	.122	.983	36	.27
	Greens	Liberal/National	-1.343 [*]	.122	.000	-1.66	-1.03
		Labor	727*	.125	.000	-1.05	40
		Other	772 [*]	.148	.000	-1.15	39
	Other	Liberal/National	571 [*]	.119	.000	88	27
		Labor	.045	.122	.983	27	.36
		Greens	.772 [*]	.148	.000	.39	1.15
Gas or coal with	Liberal/National	Labor	.574 [*]	.096	.000	.33	.82
carbon capture		Greens	1.217*	.131	.000	.88	1.55
and storage		Other	.687*	.128	.000	.36	1.02
	Labor	Liberal/National	574 [*]	.096	.000	82	33
		Greens	.643 [*]	.135	.000	.30	.99
		Other	.113	.131	.825	22	.45
	Greens	Liberal/National	-1.217*	.131	.000	-1.55	88
		Labor	643 [*]	.135	.000	99	30
		Other	530 [*]	.159	.005	94	12
	Other	Liberal/National	687*	.128	.000	-1.02	36

116

Dependent Variable Sunday, which party would you vote for party would you vote for Difference (L) Bound Error (J) Bound Err		(I) If there would be federal elections on next	(J) If there would be federal elections on next Sunday, which	Mean			95% Confid Interva	ence I
Variable Volid you vote for for j error signation source Labor -113 131 132 128 34 500 Wind Liberal/National Labor -425' 077 000 -62 -23 Greens -649' 105 000 -92 -33 Other .195 102 224 .07 46 Labor .105 100 22 -33 Other .195 100 50 50 Other .195 102 224 .00 32 52 50 Other .619' 105<.000 33 49 105<.000 38 59 Coher Liberal/National .195 100 .00 .80 .35 Greens .844' 127 .00 .17 .52 Solar PV Liberal/National .312' .073 .000 .68 .17 Other .410'	Dependent	Sunday, which party	party would you vote	Difference (I-	Std.	o :	Lower	Upper
Labor -113 1.31 1.23 1.32 1.32 1.34 1.23 1.35 <t< th=""><th>variable</th><th>would you vote for</th><th>tor</th><th>J)</th><th>Error</th><th>Sig.</th><th>Bound</th><th>Bound</th></t<>	variable	would you vote for	tor	J)	Error	Sig.	Bound	Bound
Unind Wind Mind Liberal/National Liberal/National Greens -649 -649 105 -102 224 -22 -23 -23 -23 -23 Uberal/National -649 105 200 -92 -38 -24 Labor -195 102 224 -77 46 -77 47 -77			Creans	113	.131	.825	45	.22
Unind Labor -4.25 0.07 0.00 -22 -33 Greens -649 102 224 -07 46 Labor Liberal/National 425 0.07 000 -32 62 Greens -1224 108 105 105 000 35 99 Greens Liberal/National 649' 105 000 35 99 Greens -649' 105 000 35 99 000 38 92 Liberal/National -619' 106 000 98 92 117 Other Babor -312' 073 000 50 50 50 Greens -844 122 000 100 189 -33 50 117 Other Liberal/National Libor -312' 073 000 -33 50 13 50 13 50 13 50 13 50 14		1 ib	Greens	.530	.159	.005	.12	.94
International Other 6.49 .1.08 .0.00 2.24 .7.08 .7.28 7.24 .7.28 .7.24 .7.00 .2.24 .7.00 .2.24 .7.00 .7.00 .2.24 .7.00	vvina	Liberal/National	Creans	425	.077	.000	62	23
Labor Liberal/National 425 102 24 101 242 101 105 102 23 62 Greens -224 108 159 -50 05 Other 619' 105 100 35 89 Greens Liberal/National 649' 105 100 52 1.17 Other .844' 127 00 .52 1.17 Other .844' 127 00 .52 1.17 Other .844' 127 00 .52 1.17 Other .844' 127 00 .50 .50 Solar PV Liberal/National Libaor .312' .09 .00 .68 .17 Other .161/10/10/10/10/10/11 .102 .24' .30' .35 .50 Solar PV Liberal/National Liberal/National .111' .000'//////////////////////////////////			Greens	649	.105	.000	92	38
Labol Liberal/National 4.23 0.07 000 2.33 0.02 Greens		Labor		.195	.102	.224	07	.40
Greens Liberal/National 6.49' 1.05 1.00 3.8 .92 Cher 6.19' 1.05 1.00 3.8 .92 Labor .224 1.08 1.00 3.8 .92 Liberal/National .195 1.02 .224 .46 .07 Other .844' 1.27 1.00 .89 .35 Solar PV Liberal/National .195 1.00 .89 .35 Solar PV Liberal/National Liberal/National .127 0.00 .89 .73 Solar PV Liberal/National .126 .073 .000 .13 .50 Greens .423' .099 .000 .22 .73 .15 Other .116 .026 .037 .099 .000 .22 .73 Liberal/National .126 .077 .099 .000 .27 .89 Other Liberal/National .159 .096 .533'<.41		Labor		.425	.077	.000	.23	.62
Greens Liberal/National 6.49' 1.05 0.00 3.8 9.92 Other .224 .108 .159 .005 .50 Other .844' .127 .000 .52 .117 Other .844' .127 .000 .89 .35 Greens .619' .105 .000 .89 .35 Greens .619' .105 .000 .89 .35 Greens .644' .127 .000 .68 .17 Other .584' .120 .000 .68 .17 Other .59 .000 .68 .17 .000 .13 .50 Greens .411 .002 .697 .37 .15 .000 .11 .002 .697 .37 .15 Other .116ral/National .150 .090 .000 .27 .89 Other .1607 .111 .102 .697 .13			Greens	224	.100	.159	50	.05
Defens Liberal/National 0.494 1.00 1.38 1.92 Labor 224 1.08 1.155 1.00 .52 1.17 Other Liberal/National -1.195 1.02 .224 .46 0.07 Labor -6.197 1.05 .000 .53 .53 Greens 844 1.27 .000 .50 .13 Solar PV Liberal/National Labor 312 .073 .000 .50 .13 Solar PV Liberal/National .312' .073 .000 .68 .17 Other .50 .50 .50 .13 .50 Greens .111 .102 .697 .37 .15 Other .502' .100 .001 .73 .22 Greens .111 .102 .697 .37 .15 Other .582' .120 .000 .73 .22 Greens .582'		C	Other	.619	.105	.000	.35	.89
Labor		Greens	Liberal/Inational	.649	.105	.000	.38	.92
Other 344 1.17 1.17 Other Liberal/National .105 1.00 2.22 .24 6.07 Labor .619' 1.05 .000 .89 .35 Greens .844' 1.27 .000 .68 .13 Greens .423' .099 .000 .68 .17 Other .159 .006 .53 .09 .41 Labor .112' .073 .15 .000 .68 .17 Other .111' .002 .697 .73 .15 .000 .22 .73 Greens .111' .002 .697 .15 .37 .015 .000 .22 .73 Other .120' .000 .22 .73 .015 .016 .000 .27 .89 Other Liberal/National .423' .099 .000 .73 .22 Greens .141' .000 .41			Labor	.224	.108	.159	05	.50
Other Liberal/National 195 1.02 2.24 46 .07 Labor 619' 1.05 .000 89 35 Greens 844' 1.27 .000 177 52 Solar PV Liberal/National Labor 312' .073 .000 .58 13 Greens 423' .099 .000 .68 17 .52 Other 423' .099 .000 .68 .13 .50 Greens 111 .102 .697 .37 .15 .016 .412 .000 .17 .68 Labor 111 .102 .697 .37 .15 .37 .016 .000 .27 .89 .001 .22 .73 .016 .000 .28 .27 .01 .000 .41 .93 .001 .001 .22 .016 .01 .001 .413 .138 .000 .22 .01		01	Other	.844	.127	.000	.52	1.17
Labor 619 1.05 0.00 83 35 Greens .844' 1.27 000 -1.17 52 Solar PV Liberal/National Labor 312' 0.07 0.00 50 13 Greens 423' 0.09 0.00 .68 17 Other .159 0.09 0.00 .68 17 Other .159 0.09 .00 .68 17 Other .111 102 697 .37 .15 Other .111 102 697 .37 .15 Other .111 102 697 .15 .37 Other .111 102 697 .15 .37 Other .128 or .111 102 697 .15 .37 Other .128 or .111 102 697 .133 .00 .133 Other .138 .138 .138 <		Other	Liberal/National	195	.102	.224	46	.07
Greens -844 .127 .000 -1.17 -5.20 Solar PV Liberal/National Labor 312' .073 .000 50 13 Greens 423 .099 .000 .66 17 Other .159 .096 .353 .09 .41 Labor Liberal/National .312' .073 .000 .13 .50 Greens .111 .102 .697 .37 .15 .016er .471' .099 .000 .22 .73 Greens Liberal/National .423' .099 .000 .27 .89 Other Liberal/National .159 .096 .353 .41 .09 Idesel/petrol for Labor .471' .099 .000 .73 .22 Greens 1.413' .138 .000 .16 .177 Oti (e.g. Liberal/National .682' .120 .000 .83 .111			Labor	619	.105	.000	89	35
Solar PV Liberal/National Labor 312 .073 .000 .50 13 Greens 423' .099 .000 .68 17 Other .159 .096 .033 .09 .41 Labor Liberal/National .312' .073 000 .13 .50 Greens .111 .102 .697 .37 .15 .37 Greens .111 .102 .697 .37 .50 Greens .111 .102 .697 .15 .37 Other .120 .000 .27 .89 Other Labor .111 .102 .697 .53 .41 .09 Other Labor .471' .099 .000 .73 .22 .067 .010 .41 .93 diesel/petrol for .076 .413' .138 .000 .14 .83 diesel/petrol for .141' .143' .			Greens	844	.127	.000	-1.17	52
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Solar PV	Liberal/National	Labor	312	.073	.000	50	13
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Greens	423	.099	.000	68	17
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Other	.159	.096	.353	09	.41
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Labor	Liberal/National	.312	.073	.000	.13	.50
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Greens	111	.102	.697	37	.15
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Other	.471*	.099	.000	.22	.73
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Greens	Liberal/National	.423*	.099	.000	.17	.68
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Labor	.111	.102	.697	15	.37
$\begin{split} & \begin{array}{c} \mbox{Other} & \mbox{Liberal/National} &159 & .096 & .353 &41 & .09 \\ \hline & \mbox{Labor} &471' & .099 & .000 & .73 & .22 \\ \hline & \mbox{Greens} &582' & .120 & .000 & .89 & .27 \\ \hline & \mbox{Greens} & .582' & .120 & .000 & .41 & .93 \\ \hline & \mbox{Greens} & .1413' & .138 & .000 & .106 & 1.77 \\ \hline & \mbox{Other} & .489' & .134 & .002 & .14 & .83 \\ \hline & \mbox{Greens} & .741' & .142 & .000 & .38 & 1.11 \\ \hline & \mbox{Other} & .489' & .134 & .002 & .14 & .83 \\ \hline & \mbox{Greens} & .741' & .142 & .000 & .38 & 1.11 \\ \hline & \mbox{Other} & .183 & .138 & .548 & .54 & .17 \\ \hline & \mbox{Greens} & .741' & .142 & .000 & .138 & .11 \\ \hline & \mbox{Other} & .183 & .138 & .548 & .54 & .17 \\ \hline & \mbox{Greens} & .741' & .142 & .000 & .111 & .38 \\ \hline & \mbox{Other} & .741' & .142 & .000 & .111 & .38 \\ \hline & \mbox{Other} & .741' & .142 & .000 & .111 & .38 \\ \hline & \mbox{Other} & .741' & .142 & .000 & .111 & .38 \\ \hline & \mbox{Other} & .741' & .142 & .000 & .111 & .38 \\ \hline & \mbox{Other} & .924' & .167 & .000 & .135 & .49 \\ \hline & \mbox{Other} & .924' & .167 & .000 & .49 & 1.35 \\ \hline & \mbox{Greens} & .924' & .167 & .000 & .49 & 1.35 \\ \hline & \mbox{Other} & .908' & .116 & .000 & .121 & .51 \\ \hline & \mbox{Other} & .879' & .154 & .000 & .48 & 1.27 \\ \hline & \mbox{Other} & .908' & .116 & .000 & .48 & 1.27 \\ \hline & \mbox{Greens} & .1257' & .158 & .000 & .48 & 1.27 \\ \hline & \mbox{Other} & .2908' & .116 & .000 & .48 & 1.27 \\ \hline & \mbox{Other} & .2908' & .116 & .000 & .41 & .21 \\ \hline & \mbox{Greens} & .349 & .162 & .140 & .07 & .77 \\ \hline & \mbox{Other} & .2908' & .116 & .000 & .48 & 1.27 \\ \hline & \mbox{Other} & .2908' & .116 & .000 & .48 & 1.27 \\ \hline & \mbox{Other} & .2908' & .116 & .000 & .48 & 1.27 \\ \hline & \mbox{Other} & .2908' & .116 & .000 & .48 & 1.27 \\ \hline & \mbox{Other} & .278 & .349 & .162 & .140 & .77 & .77 \\ \hline & \mbox{Other} & .2378 & .349 & .162 & .140 & .77 & .77 \\ \hline & \mbox{Other} & .378 & .349 & .162 & .140 & .77 & .77 \\ \hline & \mbox{Other} & .378 & .349 & .162 & .140 & .77 & .77 \\ \hline & \mbox{Other} & .378 & .349 & .162 & .140 & .77 & .77 \\ \hline & \mbox{Other} & .378 & .349 & .$			Other	.582*	.120	.000	.27	.89
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Other	Liberal/National	159	.096	.353	41	.09
Oil (e.g. diesel/petrol for transport)Liberal/NationalLabor $.582'$ $.120$ $.000$ $.89$ $.27$ Oil (e.g. diesel/petrol for transport)Labor $.672'$ $.101$ $.000$ $.41$ $.93$ Greens $1.413'$ $.138$ $.000$ 1.06 1.77 Other $.489'$ $.134$ $.002$ $.14$ $.83$ Labor $.672'$ $.101$ $.000$ $.93$ $.41$ Greens $.741'$ $.142$ $.000$ $.38$ $.111$ Other $.183$ $.138$ $.548$ $.54$ $.17$ Greens $.741'$ $.142$ $.000$ $.1.35$ $.49$ Other $.924'$ $.167$ $.000$ $.135$ $.49$ OtherLiberal/National $489'$ $.134$ $.002$ $.83$ $.111$ Other $.924'$ $.167$ $.000$ $.135$ $.49$ Nuclear (for power)Liberal/National $.1257'$ $.158$ $.000$ $.611$ 1.21 Greens $.1257'$ $.158$ $.000$ $.611$ 1.21 Greens $.1257'$ $.158$ $.000$ $.61$ 1.21 power)Liberal/National $908'$ $.116$ $.000$ $.61$ 1.21 Greens $.349$ $.162$ $.140$ $.07$ $.77$ Other $.029$ $.58$ $.988$ $.44$ $.38$ Iberal/National $908'$ $.116$ $.000$ -1.21 $.61$ Greens $.34$			Labor	471*	.099	.000	73	22
Liberal/National Labor .672' .101 .000 .41 .93 Greens 1.413' .138 .000 1.06 1.77 Other .489' .134 .002 .14 .83 Labor Liberal/National 672' .101 .000 .93 41 Greens .741' .142 .000 .93 41 Greens .741' .142 .000 .93 .41 Greens .741' .142 .000 .38 1.11 Other 183 .138 .548 .54 .17 Greens .741' .142 .000 -1.11 .38 Other .16bor .741' .142 .000 -1.11 .38 Other Liboral/National -1.49' .134 .002 .83 .14 Other .924' .167 .000 .135 .49 Nuclear (for Liberal/National .12			Greens	582*	.120	.000	89	27
	Oil (e.g.	Liberal/National	Labor	.672*	.101	.000	.41	.93
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	diesel/petrol for		Greens	1.413 [*]	.138	.000	1.06	1.77
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	transport)		Other	.489*	.134	.002	.14	.83
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Labor	Liberal/National	672*	.101	.000	93	41
$\begin{tabular}{ c c c c c c c } \hline $Other$ & 183 & $.138$ & $.54$ & $.17$ \\ \hline $Greens$ & $Liberal/National$ & $-1.413'$ & $.138$ & $.00$ & -1.77 & -1.06 \\ \hline $Labor$ & $741'$ & $.142$ & $.00$ & -1.11 & $.38$ \\ \hline $Other$ & $924'$ & $.167$ & $.00$ & -1.35 & 49 \\ \hline $Other$ & $924'$ & $.167$ & $.00$ & -1.35 & 49 \\ \hline $Other$ & $.183$ & $.138$ & $.548$ & 17 & $.54$ \\ \hline $Labor$ & $.183$ & $.138$ & $.548$ & 17 & $.54$ \\ \hline $Greens$ & $.924'$ & $.167$ & $.00$ & $.49$ & 1.35 \\ \hline $Other$ & $.924'$ & $.167$ & $.00$ & $.49$ & 1.35 \\ \hline $Other$ & $.924'$ & $.167$ & $.00$ & $.49$ & 1.35 \\ \hline $Other$ & $.924'$ & $.167$ & $.00$ & $.49$ & 1.35 \\ \hline $Other$ & $.924'$ & $.167$ & $.00$ & $.61$ & 1.21 \\ \hline $Other$ & $.908'$ & $.116$ & $.00$ & $.61$ & 1.21 \\ \hline $Other$ & $.879'$ & $.154$ & $.00$ & $.48$ & 1.27 \\ \hline $Labor$ & $Liberal/National$ & $908'$ & $.116$ & $.00$ & $.48$ & 1.27 \\ \hline $Other$ & $.879'$ & $.154$ & $.00$ & $.48$ & 1.27 \\ \hline $Other$ & $.000$ & $.116$ & $.00$ & $.12$ & $.61$ \\ \hline $Other$ & $.009$ & $.116$ & $.00$ & $.121$ & $.61$ \\ \hline $Greens$ & $.349$ & $.162$ & $.140$ & $.07$ & $.77$ \\ \hline $Other$ & 029 & $.158$ & $.98$ & $.44$ & $.38$ \\ \hline $Greens$ & $Liberal/National$ & $-1.257'$ & $.158$ & $.00$ & -1.66 & $.85$ \\ \hline $Labor$ & 349 & $.162$ & $.140$ & 77 & $.07$ \\ \hline $Other$ & 378 & $.191$ & $.199$ & $.87$ & $.11$ \\ \hline $Other$ & 378 & $.191$ & $.199$ & $.87$ & $.12$ \\ \hline $Other$ & 378 & $.191$ & $.199$ & $.87$ & $.12$ \\ \hline $Other$ & 378 & $.191$ & $.199$ & $.00$ & 27 & $.48$ \\ \hline $Other$ & 378 & $.191$ & $.199$ & $.00$ & 27 & $.48$ \\ \hline $Other$ & 378 & $.191$ & $.194$ & $.00$ & 27 & $.48$ \\ \hline $Other$ & 378 & $.191$ & $.194$ & $.00$ & 27 & $.48$ \\ \hline $Other$ & 378 & $.191$ & $.194$ & $.00$ & 27 & $.48$ \\ \hline $Other$ & 378 & $.191$ & $.194$ & $.00$ & 27 & $.48$ \\ \hline $Other$ & 378 & $.191$ & $.194$ & $.00$ & 27 & $.48$ \\ \hline $Other$ & 378 & $.191$ & $.194$ & $.00$ & 27 & $.48$ \\ \hline $Other$ & 378 $			Greens	.741*	.142	.000	.38	1.11
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$			Other	183	.138	.548	54	.17
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Greens	Liberal/National	-1.413 [*]	.138	.000	-1.77	-1.06
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Labor	741 [*]	.142	.000	-1.11	38
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Other	924 [*]	.167	.000	-1.35	49
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Other	Liberal/National	489 [*]	.134	.002	83	14
Greens .924* .167 .000 .49 1.35 Nuclear (for power) Liberal/National Labor .908* .116 .000 .61 1.21 Greens 1.257* .158 .000 .85 1.66 Other .879* .154 .000 .48 1.27 Labor .908* .116 .000 .48 1.27 Labor .879* .154 .000 .48 1.27 Labor .908* .116 .000 .121 .61 Other .879* .162 .140 .07 .77 Other .029 .158 .998 .44 .38 Greens Liberal/National -1.257* .158 .000 -1.66 .85 Labor 349 .162 .140 77 .07 Other 378 .191 .199 87 .11 Other Liberal/National 879* .154			Labor	.183	.138	.548	17	.54
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Greens	.924 [*]	.167	.000	.49	1.35
Greens 1.257* .158 .000 .85 1.66 Other .879* .154 .000 .48 1.27 Labor Liberal/National 908* .116 .000 121 61 Greens .349 .162 .140 07 .77 Other 029 .158 .998 44 .38 Greens Liberal/National -1.257* .158 .000 -1.66 85 Labor 349 .162 .140 77 .07 Other 378 .191 .199 87 .11 Other Liberal/National 879* .154 .000 -1.27 48	Nuclear (for	Liberal/National	Labor	.908*	.116	.000	.61	1.21
Other .879° .154 .000 .48 1.27 Labor Liberal/National 908° .116 .000 -1.21 61 Greens .349 .162 .140 07 .77 Other 029 .158 .998 44 .38 Greens Liberal/National -1.257° .158 .000 -1.66 85 Labor 349 .162 .140 77 .07 Other 349 .162 .140 77 .07 Other 349 .162 .140 77 .07 Other 378 .191 .199 87 .11 Other Liberal/National 879° .154 .000 -1.27 48	power)		Greens	1.257 [*]	.158	.000	.85	1.66
Labor Liberal/National 908* .116 .000 -1.21 61 Greens .349 .162 .140 07 .77 Other 029 .158 .998 44 .38 Greens Liberal/National -1.257* .158 .000 -1.66 85 Labor 349 .162 .140 77 .07 Other 349 .162 .140 77 .07 Other 378 .191 .199 87 .11 Other Liberal/National 879* .154 .000 -1.27 48			Other	.879*	.154	.000	.48	1.27
Greens .349 .162 .140 07 .77 Other 029 .158 .998 44 .38 Greens Liberal/National -1.257* .158 .000 -1.66 85 Labor 349 .162 .140 77 .07 Other 378 .191 .199 87 .11 Other Liberal/National 879* .154 .000 -1.27 48		Labor	Liberal/National	908*	.116	.000	-1.21	61
Other 029 .158 .998 44 .38 Greens Liberal/National -1.257* .158 .000 -1.66 85 Labor 349 .162 .140 77 .07 Other 378 .191 .199 87 .11 Other Liberal/National 879* .154 .000 -1.27 48			Greens	.349	.162	.140	07	.77
Greens Liberal/National -1.257* .158 .000 -1.66 85 Labor 349 .162 .140 77 .07 Other 378 .191 .199 87 .11 Other Liberal/National 879* .154 .000 -1.27 48			Other	029	.158	.998	44	.38
Labor 349 .162 .140 77 .07 Other 378 .191 .199 87 .11 Other 879* .154 .000 -1.27 48		Greens	Liberal/National	-1.257 [*]	.158	.000	-1.66	85
Other 378 .191 .199 87 .11 Other Liberal/National 879* .154 .000 -1.27 48			Labor	349	.162	.140	77	.07
Other Liberal/National879* .154 .000 -1.2748			Other	378	.191	.199	87	.11
		Other	Liberal/National	879 [*]	.154	.000	-1.27	48

(117

	(I) If there would be federal elections on next	(J) If there would be federal elections on next Sunday, which	Mean			95% Confid Interva	ence I
Dependent Variable	Sunday, which party would you vote for	party would you vote for	Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
		Labor	.029	.158	.998	38	.44
		Greens	.378	.191	.199	11	.87
Biomass	Liberal/National	Labor	.063	.071	.815	12	.25
		Greens	.120	.097	.606	13	.37
		Other	.440*	.095	.000	.20	.68
	Labor	Liberal/National	063	.071	.815	25	.12
		Greens	.057	.100	.941	20	.31
		Other	.378 [*]	.098	.001	.13	.63
	Greens	Liberal/National	120	.097	.606	37	.13
		Labor	057	.100	.941	31	.20
		Other	.320 [*]	.118	.034	.02	.62
	Other	Liberal/National	440 [*]	.095	.000	68	20
		Labor	378 [*]	.098	.001	63	13
		Greens	320*	.118	.034	62	02

*. The mean difference is significant at the 0.05 level.

F. EXPORT & FUTURE ENERGY CONSIDERATIONS

Support for hydrogen export and facilities

						95% Con Interval f	fidence or Mean		
				Std.	Std.	Lower	Upper		
		Ν	Mean	Deviation	Error	Bound	Bound	Minimum	Maximum
	Liberal/Nationa	613	5.69	1.496	.060	5.57	5.80	1	7
	Labor	497	5.55	1.621	.073	5.41	5.70	1	7
	Greens	194	5.37	1.708	.123	5.12	5.61	1	7
	Other	209	5.27	1.598	.111	5.05	5.49	1	7
SupportH2Export	Total	1513	5.54	1.586	.041	5.46	5.62	1	7
	Liberal/Nationa	613	4.64	1.712	.069	4.51	4.78	1	7
	Labor	497	4.68	1.683	.075	4.53	4.83	1	7
	Greens	194	4.55	1.679	.121	4.31	4.78	1	7
	Other	209	4.06	1.768	.122	3.82	4.30	1	7
SupportH2ExportFacility_	Total	1513	4.56	1.716	.044	4.48	4.65	1	7

Table 89. Support for hydrogen export and facilities by political party preferences – Descriptives

Table 90. Support for hydrogen export and facilities by political party preferences – ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
SupportH2Export	Between Groups	34.332	3	11.444	4.584	.003
	Within Groups	3767.083	1509	2.496		
	Total	3801.414	1512			
SupportH2ExportFacility	Between Groups	62.947	3	20.982	7.210	.000
	Within Groups	4391.525	1509	2.910		
	Total	4454.472	1512			

Table 91. Support for hydrogen export and facilities by political party preferences – Multiple comparisons (Tukey HSD)

	(I) If there would be federal elections on	(J) If there would be federal elections on				95% Confid	ence
	next Sunday, which	next Sunday, which	Mean			Interva	ıl
	party would you vote	party would you vote	Difference	Std.		Lower	Upper
Dependent Variable	for (RECODED)	for (RECODED)	(I-J)	Error	Sig.	Bound	Bound
SupportH2Export	Liberal/National	Labor	.132	.095	.511	11	.38
		Greens	.319	.130	.068	02	.65
		Other	.417*	.127	.006	.09	.74
	Labor	Liberal/National	132	.095	.511	38	.11
		Greens	.187	.134	.499	16	.53
		Other	.285	.130	.126	05	.62
	Greens	Liberal/National	319	.130	.068	65	.02
		Labor	187	.134	.499	53	.16
		Other	.098	.158	.925	31	.50
	Other	Liberal/National	417*	.127	.006	74	09
		Labor	285	.130	.126	62	.05
		Greens	098	.158	.925	50	.31
SupportH2ExportFacility	Liberal/National	Labor	035	.103	.986	30	.23
		Greens	.096	.141	.903	27	.46
		Other	.581 [*]	.137	.000	.23	.93
	Labor	Liberal/National	.035	.103	.986	23	.30
		Greens	.132	.144	.799	24	.50
		Other	.616 [*]	.141	.000	.25	.98
	Greens	Liberal/National	096	.141	.903	46	.27
		Labor	132	.144	.799	50	.24
		Other	.484*	.170	.023	.05	.92
	Other	Liberal/National	581 [*]	.137	.000	93	23
		Labor	616 [*]	.141	.000	98	25
		Greens	484*	.170	.023	92	05

*. The mean difference is significant at the 0.05 level.

120

Domestic use considerations

	Gender (binary)	Ν	Mean	Std. Deviation	Std. Error Mean
Space heating	Male	726	5.4959	1.48440	.05509
	Female	774	5.4005	1.44938	.05210
Hot water	Male	726	5.7383	1.44998	.05381
	Female	774	5.6835	1.39090	.04999
Cooking	Male	726	5.6240	1.46044	.05420
	Female	774	5.5116	1.48184	.05326
Electricity generation	Male	726	5.6212	1.45594	.05404
	Female	774	5.4444	1.41746	.05095
Gas blending	Male	726	5.4752	1.41473	.05251
	Female	774	5.2713	1.50679	.05416
FCEV	Male	726	5.4807	1.55684	.05778
	Female	774	5.1990	1.58639	.05702

Table 92. Willingness to use hydrogen for domestic applications by gender - Group statistics

		Leve Test Equal	ne's for lity of				(F			
		Varia	nces			t-test	for Equality	of Means	0504 0	<i>c</i>
						Sig.		Std.	95% Con	fidence
						(2-	Mean	Error	Interval	of the
		_	0.1		.16	tailed	Differenc	Differen	Differe	ence
On each antin a	Envel	F	5ig.	1 050)	e	Ce	Lower	Opper
Space neating	Equal	.524	.469	1.259	1498	.208	.09535	.07576	05327	.24397
	variances									
	Laural			1 050	1400 5	200	00525	07592	05229	24409
	Equal			1.200	1400.0	.209	.09535	.07562	05336	.24406
					11					
Hot water	Equal	811	368	747	1/08	455	05483	07336	- 08006	10872
TIOL WALCI	variances	.011	.500	./4/	1430	.400	.00400	.07330	00900	.13072
	assumed									
	Faual			746	1481 4	456	05483	07345	- 08925	10801
	variances not			.740	87	.+00	.00400	.07040	.00020	.10001
	assumed				01					
Cooking	Equal	.000	.996	1.478	1498	.140	.11234	.07603	03679	.26147
g	variances									
	assumed									
	Equal			1.478	1494.3	.140	.11234	.07599	03672	.26140
	variances not				34					
	assumed									
Electricity	Equal	.277	.598	2.382	1498	.017	.17677	.07420	.03121	.32232
generation	variances									
	assumed									
	Equal			2.380	1485.7	.017	.17677	.07427	.03109	.32245
	variances not				46					
	assumed									
Gas blending	Equal	1.501	.221	2.697	1498	.007	.20389	.07559	.05562	.35215
	variances									
	assumed									
	Equal			2.703	1497.9	.007	.20389	.07543	.05592	.35185
	variances not				98					
	assumed									

Table 93. Willingness to use hydrogen for domestic applications by gender - Independent Samples Test

FCEV	Equal	.107	.744	3.469	1498	.001	.28175	.08123	.12242	.44108
	variances									
	assumed									
	Equal			3.471	1494.9	.001	.28175	.08118	.12251	.44099
	variances not				36					
	assumed									

Figure 23. Gender differences in willingness to use hydrogen in domestic applications

Figure 24. Gender differences in importance of factors related to domestic use of hydrogen

G. TRUST IN ORGANISATIONS

Respondents were asked the extent to which they thought particular organisations and groups would act in the best interests of consumers if a hydrogen economy was developed in Australia.

Table 94. Trust in organisations

If a hydrogen economy was to be developed in Australia, to what extent do you agree		
or disagree that the following groups would act in the best interest of the consumer?	Mean ^a	SD
CSIRO	5.43	1.33
Universities	5.24	1.32
Environmental Non-Government Organisations (ENGOs)	5.18	1.42
State government	4.94	1.51
Federal government	4.89	1.64
Local government	4.84	1.47
Car/appliance manufacturers	4.50	1.50
Electricity generation companies	4.35	1.65
Media	4.33	1.54
Fuel/gas supply companies	4.08	1.76

^aMeasured on a 7-point rating scale, where 1 = strongly disagree, 4 = neither agree nor disagree, 7 = strongly agree); n = 3,020.

Appendix 2. National Survey

SCREENING QUESTIONS

In what year were you born?

What is your gender?

- o Male
- o Female
- o Transgender Female
- o Transgender Male
- o Gender Variant/Non-Conforming
- o Not listed
- o Prefer not to answer

What is the postcode of your home address?

 $\circ \quad \ \ I \ \ do \ not \ wish \ to \ answer$

and your suburb?

[Select Suburb from dropdown list of Australian suburbs matched to postcode]

[*if no* match] We couldn't match your Postcode to a suburb.

- Is [script] your correct Postcode?
 - o Yes
 - **No**

[if No] What is the name of your suburb?

State

[Autocoded] NSW VIC QLD SA WA TAS NT ACT

Other

RP2.1-02 Investigating the Australian public attitudes to hydrogen and future fuels

126

PARTICIPANT INFORMATION SHEET

Thank-you. You have qualified to complete the survey.

Research title: Investigating public attitudes towards and perceptions of hydrogen and future fuels in Australia

Project team: Professor Peta Ashworth, Dr Katherine Witt, Dr. Belinda Wade, Dr Svetla Petrova, Dr Victoria Martin

1. School of Chemical Engineering, The University of Queensland, Brisbane, Australia

2. Centre for Natural Gas, The University of Queensland, Brisbane, Australia

3. School of Business, The University of Queensland, Brisbane Australia

About this survey

This survey aims to investigate public attitudes towards and perceptions of hydrogen and future fuels among the Australian adult population. The study is being conducted by a team of researchers from the University of Queensland, led by Professor Peta Ashworth at the School of Chemical Engineering. The survey is funded by the Future Fuels Cooperative Research Centre (FFCRC) as part of the project **Enhancing** acceptance and a social licence to operate of future fuel infrastructure through community engagement and deliberative processes (RP2.1-02), which aims to understand current knowledge, attitudes and responses towards the development of a hydrogen industry in Australia. The FFCRC focuses on the pivotal role that new fuels and the existing gas infrastructure will have to play in a low carbon economy. It is anticipated that the results of this research project will be published and/or presented in a variety of forms. Findings from this survey will be used to prepare research reports and other relevant academic publications and might be further incorporated in comparative analysis along with data and information collected from other studies conducted within the scope of the larger project 'Enhancing acceptance and a social licence to operate of future fuel infrastructure through community engagement and deliberative processes'.

The information that you provide during the survey will be anonymous. The results from this survey will be presented as general conclusions only.

What is involved?

You are invited to respond to this online survey, which will take approximately 20 minutes of your time. We are keen to access the views of a range of Australians and you do not have to be an expert on the subject to participate.

Do I have to be a part of this program?

Please note that participation in this survey is entirely voluntary and you are free to withdraw at any time without prejudice or penalty. Your consent to participate in the survey will be obtained if you choose to proceed.

If you decide to take part and later change your mind, you are free to stop at any time, and you would not need to give any explanation for your decision to stop participating. If you choose to stop participating, your data will not be used in the research. Once you have completed the survey you won't be able to change your answers.

How can I find out more about the study?

If you would like more information about this study please contact the project leader Peta Ashworth by phone (+61 7 3346 3883) or e-mail (p.ashworth@uq.edu.au).

Has this project received ethical clearance?

This study adheres to the Guidelines of the ethical review process of The University of Queensland and the National Statement on Ethical Conduct in Human Research and has been approved by the UQ Human Research Ethics Committee (Project No. 2020002474). If you have any ethical concerns related to this study, you may contact the UQ Ethics Coordinator on +61 7 3365 3924.

Your contribution to this research project would be greatly appreciated. Thank you in advance for your consideration and support.

Consent

- \circ $\;$ Yes, I have reviewed the information above, and I agree to participate in this online survey
- \circ $\,$ No, sorry I do not wish to participate in this online survey

PERCEPTIONS, KNOWLEDGE AND AWARENESS

Perceptions, knowledge & awareness of hydrogen

When you hear the word hydrogen what are the first things that come to mind?

The following are some general questions about hydrogen properties. Please do not guess. It is important we understand how much people know about hydrogen.

	Yes	No	l do not know
Is hydrogen heavier than air at room temperature?	0	0	0
Is hydrogen available naturally in its pure form?	0	0	0
Does hydrogen smell?	0	0	0
Is hydrogen flammable in air?	0	0	0
Can hydrogen be stored as a liquid?	0	0	0

How much do you know about the following?

	l have never heard of it	I have heard of it	I know about it and could describe it to a friend
How hydrogen is produced	0	0	0
The use of hydrogen fuel cells in vehicles	0	0	0
The use of hydrogen fuel cells in homes	0	0	0
Hydrogen as an energy storage medium for electricity	0	0	0
Hydrogen refuelling stations	0	0	0
Burning hydrogen as a replacement for natural gas	0	0	0

There has been discussion about using hydrogen in Australia recently. Please respond to the following statements.

	Yes	No	Unsure
I have heard about a project blending natural gas and hydrogen for domestic use	m	m	m
I have heard about a hydrogen production project in Australia	m	m	m
I have heard about hydrogen in the media	m	m	m
I have heard about the National Hydrogen Strategy	m	m	m

Support for hydrogen

Overall, how do you feel about hydrogen as a possible solution for energy and environmental challenges?

- Very supportive
- Supportive
- o Slightly supportive
- Neither supportive nor unsupportive
- o Slightly unsupportive
- o Unsupportive
- Very unsupportive

[If Neither supportive nor unsupportive is selected:]

What is the main reason you selected *Neither supportive nor unsupportive* for hydrogen as a possible solution for energy and environmental challenges?

- o I did not understand the question
- o I do not have any feelings either way (positive or negative)
- o I have no opinion on this issue
- o I don't care
- o I do not know enough about hydrogen to decide
- o There are pros and cons of hydrogen, which makes my support neutral
- Other reason (please specify):

BACKGROUND INFORMATION ABOUT HYDROGEN

This video introduces you to some of the concepts around hydrogen energy. **Please watch carefully** – you will be asked a question about the video content. **Incorrect answers will terminate this survey**. *Please note: the next button will appear after the video has finished.*

[https://youtu.be/fFGT2z82tOM ARENA's video: "What is renewable 'green' hydrogen gas?"]

Which of the following was pictured in the video? [Attention check question]

- o Ship
- o Bicycle
- o Giraffe
- o Aeroplane

HYDROGEN PRODUCTION

As you heard in the video, hydrogen can be produced from **electrolysis** of **water** using **renewable energy sources**. Electrolysis uses **electricity** to **split water** molecules into **hydrogen** and **oxygen** and produces no greenhouse gas emissions. Hydrogen can also be made from **fossil fuels** (coal or gas), which undergo **thermochemical reactions** and produce **hydrogen** and **carbon dioxide**. When combined with **carbon capture and storage** (CCS) technology, which involves capturing carbon dioxide and storing it deep underground, up to 93% of greenhouse gas emissions can be prevented from being released to the atmosphere.

HYDROGEN PRODUCTION PREFERENCES

To what extent do you agree or disagree with the following statements about hydrogen production for energy?

	Strongly	Disagree	Slightly	Neither	Slightly	Agree	Strongly
	disagree		disagree	agree nor disagree	agree		agree
Hydrogen should be used increasingly for energy supply in Australia	0	0	0	Õ	0	0	0
Hydrogen should be produced using renewable energy and electrolysis only.	0	0	0	0	0	0	0
Hydrogen should be produced using fossil fuels with carbon capture and storage as an intermediate step while transitioning to renewables	0	0	O	0	0	0	O
Hydrogen should be produced using fossil fuels with carbon capture and storage indefinitely	0	0	0	0	0	0	0
The use of hydrogen contributes to climate protection	0	0	0	0	0	0	0
Using hydrogen will reduce greenhouse gas emissions	0	0	0	0	0	0	0

STREAM A QUESTIONS (FUTURE ENERGY & EXPORT)

Future energy source preferences

How strongly do you agree or disagree with the use of the following energy sources and related technologies as potential ways of generating Australia's future energy needs?

	Strongly disagree	Disagree	Slightly disagree	Neither agree nor disagree	Slightly agree	Agree	Strongly agree
Hydrogen	0	0	0	0	0	0	0
Coal	0	0	0	0	0	0	0
Gas	0	0	0	0	0	0	0
Gas or coal with carbon capture and storage	0	0	0	0	0	0	0
Wind	0	0	0	0	0	0	0
Solar PV	0	0	0	0	0	0	0
Oil (e.g. diesel/petrol for transport)	0	0	0	0	0	0	0
Nuclear (for power)	0	0	0	0	0	0	0
Biomass	0	0	0	0	0	0	0

Export considerations

As you learned earlier in the ARENA video, Australia could become an exporter of hydrogen.

If Australia was to start exporting hydrogen how important are the following considerations to you?

	Not at all important	Slightly important	Somewhat important	Very important	Extremely important
Increasing economic benefits to Australia	0	0	0	0	0
Creating new job opportunities	0	0	0	0	0
Retaining the rights of intellectual property for hydrogen production	0	0	0	0	O
Ensuring Australia is an early mover in the export market	0	0	0	0	O
Contributing to the world's emissions reductions	0	0	0	0	0
Supporting the development of a local manufacturing industry	0	0	0	0	0
Creating regional opportunities through the production of hydrogen	0	0	0	0	0
Ensuring availability of a domestic hydrogen supply	0	0	0	0	0
Minimising the overall use of water in hydrogen production	0	0	0	0	0
Ensuring safety of the production process	0	0	0	0	0
Minimising the environmental impacts of the production and transport process	0	0	0	0	0
Ensuring safety in the way hydrogen is transported	0	0	0	0	0

How much do you agree/disagree with the following statements?

	Strongly disagree	Disagree	Slightly disagree	Neither agree nor disagree	Slightly agree	Agree	Strongly agree
I support the idea of Australia exporting hydrogen	0	0	0	0	0	0	0
I support the idea of a hydrogen export facility being built near me	0	0	0	0	0	0	0

STREAM B QUESTIONS (DOMESTIC USE)

As you learned earlier in the ARENA video, hydrogen could be used in domestic applications.

Power for space heating (for heating rooms in a house), hot water and cooking can be provided by natural gas or electricity. As the proportion of renewable generation on the electricity grid is increased, emissions from this source decrease. It is also possible to decrease emissions from the gas grid, using hydrogen. This could be achieved by piping low emissions hydrogen into the existing gas network (at around 10%), which does not require any changes to either the network or appliances in the home. Up to 20% hydrogen blends have already been trialled in projects in Europe, including France and Germany. The gas network could also be completely emissions free if all of the gas were to be replaced with hydrogen. This transition requires modification of the gas pipelines (although in some places existing networks are already suitable) and modification of household appliances. A 100% hydrogen conversion project is currently underway in Scotland.

Willingness to use hydrogen for domestic purposes

136

16 1		·····	ta date leas	en en el III des ser en el	and a second sec	le a fla sea a	It has a second	Is a sea a fram the a	f all accellence and a second	- 0
\mathbf{n}	aroaon	Wore avaliance	today no				IT IN VOUR	nome for the		c /
	ulouell		louay. no							3:

	Very willing	Moderately willing	Slightly willing	Neither willing	Slightly unwilling	Moderately unwilling	Very unwilling
				nor unwilling			
On-site electricity generation	0	0	0	0	0	0	0
Cooking	0	0	0	0	0	0	0
Using natural gas that contains some hydrogen (i.e. a blend)	0	0	0	0	0	0	0
For driving hydrogen fuel cell electric vehicles	0	0	0	0	0	0	0
Hot water heating	0	0	0	0	0	0	0
Space heating	0	0	0	0	0	0	0

How important are the following factors in determining your willingness to use hydrogen in your home?

			0 1 1	14	
	Not at all	Slightly	Somewhat	Very	Extremely
	important	important	important	important	important
The cost to modify appliances	0	0	0	0	0
The cost of hydrogen to fuel your home	0	0	0	0	0
The level of inconvenience to change over from	0	0	0	0	0
current systems and appliances					
Safety	0	0	0	0	0
Flame colour/visibility	0	0	0	0	0
Odour for detecting leaks	0	0	0	0	0
No greenhouse gas emissions	0	0	0	0	0
Health benefits (no carbon monoxide emissions)	0	0	0	0	0
Proven demonstration projects	0	0	0	0	0
Being able to choose between gas or electricity for	or O	0	0	0	0
cooking					
Reliability of energy supply	0	0	0	0	0

How much do you agree/disagree with the following statement?

I support the idea of a hydrogen facility being built near me to provide hydrogen for domestic use (i.e. households, transport, industry).

- o Strongly agree
- o Agree
- o Slightly agree
- o Neither agree nor disagree
- o Slightly disagree
- o Disagree
- o Strongly disagree

Support for hydrogen

At this point, how do you feel about hydrogen as a possible solution for energy and environmental challenges?

- Very supportive
- o Supportive
- $\circ \quad \ \ \, \text{Slightly supportive} \\$
- o Neither supportive nor unsupportive
- o Slightly unsupportive
- o Unsupportive
- o Very unsupportive

[If Neither supportive nor unsupportive is selected:]

What is the main reason you selected *Neither supportive nor unsupportive* for hydrogen as a possible solution for energy and environmental challenges?

- o I did not understand the question
- o I do not have any feelings either way (positive or negative)
- o I have no opinion on this issue
- o I don't care
- o I do not know enough about hydrogen to decide
- o There are pros and cons of hydrogen, which makes my support neutral
- Other reason (please specify):

COMMUNICATION MESSAGES

Please read the following extract from a newspaper article about hydrogen.

Stream 1: Environmental message (transition)

Reducing carbon emissions from the gas network by blending in 5-10% renewable gases (like hydrogen) is an important first step towards Australia's future energy mix.

Stream 2: Economic message (national)

Hydrogen will provide important economic benefits to Australia through export revenue, new industries, and jobs.

Stream 3: Environmental message (100% renewable energy)

Australia can use its abundant renewable energy resources to produce hydrogen, which will give us 100% emissions-free "green" energy.

Stream 4: Economic message (household)

The government is partnering with industry to develop tangible solutions to make hydrogen energy affordable for Australian households.

Stream 5: Control group (no message; skip next question)

After reading that statement, how do you feel about hydrogen as a possible solution for energy and environmental challenges?

- Very supportive
- o Supportive
- Slightly supportive
- o Neither supportive nor unsupportive
- Slightly unsupportive
- o Unsupportive
- o Very unsupportive

[If Neither supportive nor unsupportive is selected:]

What is the main reason you selected *Neither supportive nor unsupportive* for hydrogen as a possible solution for energy and environmental challenges?

- I did not understand the question
- o I do not have any feelings either way (positive or negative)
- o I have no opinion on this issue
- o I don't care
- o I do not know enough about hydrogen to decide
- o There are pros and cons of hydrogen, which makes my support neutral
- Other reason (please specify):

ATTITUDE TOWARDS HYDROGEN

Overall, do you think using hydrogen for energy in Australia would be:

very useful +3 _ +2 _ +1 _ 0 _ -1 _ -2 _ -3 very useless very worthwhile +3 _ +2 _ +1 _ 0 _ -1 _ -2 _ -3 very worthless a very good thing +3 _ +2 _ +1 _ 0 _ -1 _ -2 _ -3 a very bad thing very beneficial +3 _ +2 _ +1 _ 0 _ -1 _ -2 _ -3 very harmful

When you think about the use of hydrogen for energy in Australia, please indicate how it makes you feel:

very proud +3 _ +2 _ +1 _ 0 _ -1 _ -2 _ -3 very embarrassed very happy +3 _ +2 _ +1 _ 0 _ -1 _ -2 _ -3 very sad very inspired +3 _ +2 _ +1 _ 0 _ -1 _ -2 _ -3 very uninspired very calm +3 _ +2 _ +1 _ 0 _ -1 _ -2 _ -3 very angry very unconcerned +3 _ +2 _ +1 _ 0 _ -1 _ -2 _ -3 very worried

TRUST IN GROUPS

If a hydrogen economy was to be developed in Australia, to what extent do you agree or disagree that the following groups would act in the best interest of the consumer?

	Strongly	Disagree	Slightly	Neither	Slightly	Agree	Strongly
	disagree		disagree	agree	agree		agree
				nor			
				disagree			
Federal government	0	0	\mathbf{O}	\mathbf{O}	0	0	\mathbf{O}
State government	0	0	0	0	0	0	0
Local government	0	0	0	0	0	\mathbf{O}	0
Electricity generation companies	0	0	0	0	0	\mathbf{O}	0
Fuel/gas supply companies	0	0	0	0	0	0	0
Car/appliance manufacturers	0	0	0	0	0	0	0
Universities	0	0	0	0	0	0	0
CSIRO	0	0	0	0	0	0	0
Media	0	0	0	0	0	\mathbf{O}	0
Environmental Non-Government	0	0	0	0	0	0	0
Organisations (ENGOs)							

CLIMATE CHANGE BELIEFS

Do you believe climate change is happening now or will happen in the next 30 years?

- Yes, it is already happening.
- o It will start happening within the next 30 years.
- No, it is not happening and won't.
- o I do not know/ I am not sure

How convinced are you that climate change represents a real problem for Australia?

- o Very convinced
- o Convinced
- o Slightly convinced
- o Neither convinced nor unconvinced
- Slightly unconvinced
- o Unconvinced
- o Very unconvinced

ENVIRONMENTAL IDENTITY

Please indicate how much you agree or disagree with the following statements

	Strongly disagree	Disagree	Slightly disagree	Neither agree nor disagree	Slightly agree	Agree	Strongly agree
Being an environmentally friendly person is an important part of who I am	0	0	0	0	0	0	0
I am the type of person who is environmentally friendly	0	0	0	0	0	0	0
I see myself as an environmentally friendly person	0	0	0	0	0	0	0

INNOVATOR CATEGORY

When thinking of your response to new technology, which best describes you?

- o I closely follow new technology and am comfortable taking risks by being the first to purchase it.
- o I see potential advantages in new technology and like to be among the first to use it.
- o I am interested in new technology but prefer to wait for others to try it first.
- o I am not thrilled by new technology but might purchase after it has been on the market for some time.
- o I have little affinity with new technology and do not like to buy it unless necessary.

HOUSEHOLD CHARACTERISTICS

Is your home:

- Owned outright
- $\circ \quad \text{Owned with a mortgage} \\$
- o Being purchased under a rent/buy scheme
- o Being rented
- o Being occupied rent free
- Being occupied under a life tenure scheme
- Other (please specify):

Which of the following best describes your dwelling?

Separate house

Separate house

Semi-detached, row or terrace house, townhouse etc. with

o One storey

• Two or more storeys

Flat or apartment

- o In a one or two storey block
- In a three storey block
- In a four or more storey block
- Attached to a house

Other dwelling

- o Caravan
- o Cabin, houseboat
- Improvised home, tent, sleepers out
- House or flat attached to a shop, office, etc.

Do you subscribe to renewable energy (sometimes called GreenPower) from your electricity provider?

- Yes, if yes what percentage comes from renewable sources? ____
- **No**
- o Do not know

Do you use the following in your household?

	Yes	No
Electricity (grid connected)	Q	0
Gas (mains)	Q	0
Gas (bottled)	O	0
Solar hot water	O	0
Solar PV (e.g. rooftop panels)	O	0
Battery storage unit	O	0
Battery electric vehicle	Q	0
Hybrid vehicle	O	0
Others (please specify)	0	0

What is the main reason you do not have a mains gas connection?

- My home has been designed to run on all-electric fixed appliances.
- o Technical difficulties prevented the connection to the reticulated/mains gas network in
- o my neighbourhood.
- o I disconnected from the gas network because I switched my fixed appliances to all-electric.
- o I asked to be disconnected from the reticulated gas network because I could not pay
- o the bills.
- There is no reticulated/mains gas network in my neighbourhood/ building.
- o It was too expensive to connect to the reticulated/mains gas network in my
- o neighbourhood.
- My retailer disconnected me because I could not pay the bills.
- Other reason (please specify):

CURRENT USE AND ENERGY PREFERENCES

In your home, what type of energy do you use and would prefer to use for each of the following?

Hot water heating (incl. gas or electric boosting systems)

Note: select all that apply. If current and preferred energy sources are the same, please select the same in both sections.

Currently using		Prefer to use				
0	Electricity (mains)	0	Electricity (mains)			
0	Gas	0	Gas			
0	Diesel	0	Diesel			
0	Solar hot water system	0	Solar hot water system			
0	Wood	0	Wood			
0	Other (please specify)	0	Other (please specify)			
0	Not applicable	0	Not applicable			

Stovetop cooking

Note: select all that apply. If current and preferred energy sources are the same, please select the same in both sections.

Currently using		Prefer to use				
0	Electricity (mains)	0	Electricity (mains)			
0	Gas	0	Gas			
0	Diesel	0	Diesel			
0	Wood	0	Wood			
0	Other (please specify)	0	Other (please specify)			
0	Not applicable	0	Not applicable			

Home space heating (i.e. heating rooms)

Note: select all that apply. If current and preferred energy sources are the same, please select the same in both sections.

Curren	tly using	Prefer to use				
0	Electricity (mains)	0	Electricity (mains)			
0	Gas	0	Gas			
0	Diesel	0	Diesel			
0	Passive solar design (thermal mass)	0	Passive solar design (thermal mass)			
0	Wood	0	Wood			
0	Other (please specify)	0	Other (please specify)			
0	Not applicable	0	Not applicable			
CAPACITY TO PAY ENERGY BILLS

Which best describes your situation in relation to your electricity bill?

- \circ \quad Paying my electricity bill in full is never a problem for me
- o I sometimes find it hard to pay my electricity bill when it becomes due
- o I always struggle to pay my electricity bill when it becomes due
- o My electricity bill is usually in credit after factoring in solar feed-in tariffs
- o I pre-pay my electricity bill
- o I do not pay for electricity in my house

Which best describes your situation in relation to your gas bill?

- Paying my gas bill in full is never a problem for me
- \circ ~ I sometimes find it hard to pay my gas bill when it becomes due
- o I always struggle to pay my gas bill when it becomes due
- o I pre-pay my gas bill
- o I do not pay for gas in my house

DEMOGRAPHICS

Which of the following best describes who is living in your household?

- o Group household
- Single person household
- o One parent with child/children
- Couple with child/children
- Couple with no children
- Other family (e.g. extended family household)

Which best describes your highest level of education you have completed?

- Year 10 or below
- Year 11 or equivalent
- Year 12 or equivalent
- o Trade certificate or Apprenticeship
- o Certificate I or II
- Certificate III or IV
- o Advanced Diploma / Diploma
- o Bachelor or Honours degree
- Postgraduate degree (e.g. Masters, PhD)
- Other (please specify)

145

Which of the following best describes your occupational status?

- o Student
- Household duties
- Employed Part Time
- Employed Full Time
- Unemployed not looking for work
- Unemployed looking for work
- \circ Retired
- o Pensioner
- $\circ \quad \text{ Not able to work} \\$
- o Other (please specify)

Which occupational sector do you work in (or worked in prior to ceasing work)?

- o Agriculture, forestry, fishing
- o Mining
- Manufacturing
- o Electricity, gas, water, waste services
- o Construction
- Wholesale trade
- o Retail trade
- o Accommodation and food services
- Transport, portal and warehousing
- o Information, media and telecommunications
- Financial and Insurance services
- o Rental, hiring and real estate services
- o Professional, scientific, technical services
- Administrative and support workers
- o Public administration and safety
- Education and training
- Health care and social assistance
- Arts and recreation services
- o Other services
- o Not applicable

In which country you were born? Please Select

- o Australia
- o England
- o India
- China (excluding Hong Kong and Taiwan)
- o Italy
- o Malaysia
- Germany
- o South Korea
- o Greece
- Hong Kong
- o Lebanon
- o Ireland
- o Iraq
- o Iran
- o Indonesia
- o Afghanistan
- o Fiji
- o Bangladesh
- Croatia
- Egypt
- o Other

[If other] Please specify which country you were born in? _____

Are you of Aboriginal or Torres Strait Islander origin?

- o No
- o Yes, Aboriginal
- Yes, Torres Strait Islander

What is your household's total income per year (before tax)?

- Less than \$30,000
- o **\$30,000 \$59,999**
- o **\$60,000 \$89,999**
- o \$90,000 \$119,999
- o \$120,000 \$149,999
- \$150,000 \$179,000
- o \$180,000 \$199,999
- o \$200,000 \$219,999
- o **\$220,000 \$239,999**
- o **\$240,000 \$269,999**
- \$270,000 \$299,999
- More than \$300,000
- Other (please specify)

How would you describe your political orientation, if 1 is very "left" and 9 is very "right"?

very left 1_2_3_4_5_6_7_8_9 very right

If there would be federal elections on next Sunday, which party would you vote for:

- Liberal Party of Australia
- o National Party of Australia
- o Australian Labor Party
- o Australian Greens
- Pauline Hanson's One Nation
- Centre Alliance

- o Palmer United Party
- o Katter's Australia Party
- o Other (please list)

If you have any other comments to make please feel free to share them below:

THIS PAGE SHOULD BE LEFT BLANK

Future Fuels CRC

Enabling the Decarbonisation of Australia's Energy Networks

www.futurefuelscrc.com

info@futurefuelscrc.com

Australian Government Department of Industry, Science, Energy and Resources Business Cooperative Research Centres Program